• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Fibroblasts could provide new target for treatment of rheumatoid arthritis

Bioengineer by Bioengineer
November 23, 2016
in Science
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A study led by researchers at the University of Birmingham reveals the key role of different types of fibroblast cells in the development of rheumatoid arthritis (RA), opening up a new avenue for research into treatment of the disease.

Synovial Fibroblasts (SFs) are cells that make up part of the connective tissue, or synovium, around human joints. In RA patients, SF cells cause damage by invading and attacking the cartilage and bone around the joint.

A team of researchers from the University of Birmingham's Institute of Inflammation and Ageing identified two distinct types of SF within the synovial membrane. The team showed that these cell types, defined by the presence of specific cell surface markers (PDPN and CD248), aggregate in different layers of the synovium, and just one (the PDPN type) is responsible for cartilage damage in RA patients.

During the study, SF cells from RA patients were grown in vitro within an artificial synovium, then 'activated' using stress-inducing proteins called cytokines. The artificial synovium containing the SFs was then inserted into a mouse (whose own immune system had been 'switched off'), along with human cartilage to simulate a joint, to see how the SF cells would develop in vivo.

Following implantation, tests showed that the 'lining' layer of the artificial synovium (i.e. the part closest to the cartilage) contained invasive PDPN type SFs, while the part that was further away from the cartilage contained the non-invasive CD248 type.

The study also confirmed recent findings that 'activated' SF cells can migrate, i.e. travel through blood vessels to attack other cartilage in the body. The researchers built on these findings by showing that PDPN type SF cells were the first to migrate, with CD248 cells only appearing in secondary tissue at a later stage.

Dr Adam Croft from the University of Birmingham, who led the research, said:

"This study not only shows the existence of distinct sub-sets of synovial fibroblasts, but also suggests that these cells are able to self-organise into lining and sub-lining layers in the presence of cartilage. Combined with the difference in migration rates between the two types of cell, these results are extremely promising in terms of finding new therapeutic targets for treatment of rheumatoid arthritis."

Current treatment for RA involves giving patients a combination of immunosuppressive drugs, which can have a serious impact on quality of life. The results of this study suggest that targeting SF cells processes could make future treatments not only more effective, but also more manageable for patients.

###

Media Contact

Liz Bell
[email protected]
44-121-414-2772
@unibirmingham

http://www.bham.ac.uk

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1240 shares
    Share 495 Tweet 310
  • New Study Reveals the Science Behind Exercise and Weight Loss

    105 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    92 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Myosteatosis Links Advanced Cancer in Young Women

New Actinomycete Discovered from Artichoke Leaves

Investing in Soil Acidity Remediation for Africa’s Future

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.