• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Research team traces evolution of the domesticated tomato

Bioengineer by Bioengineer
January 7, 2020
in Biology
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

UMass Amherst biologists led evolutionary detective work on fruit’s origins

IMAGE

Credit: University of Georgia/Alexis Ramos


AMHERST, Mass. – In a new paper, a team of evolutionary biologists and geneticists led by senior author associate professor Ana Caicedo, with first author Hamid Razifard at the University of Massachusetts Amherst, and others, report that they have identified missing links in the tomato’s evolution from a wild blueberry-sized fruit in South America to the larger modern tomato of today.

The missing link that deserves more attention than it has gotten to date, they say, is one of a number of intermediate variants between the fully wild and fully domesticated tomato. Results of their genetic studies indicate that the modern cultivated tomato is most closely related to a weed-like tomato group still found in Mexico rather than to semi-domesticated intermediate types found in South America.

Razifard, a postdoctoral researcher in the Caicedo lab, says, “What’s new is that we propose that about 7,000 years ago, these weedy tomatoes may have been re-domesticated into the cultivated tomato.” The common cultivated tomato is the world’s highest value and most widely grown vegetable crop and an important model for studying fruit development, Caicedo and colleagues point out.

In this work, part of a larger research effort supported by the National Science Foundation and led by Esther van der Knaap at the University of Georgia, the researchers say that for many years an oversimplified view of tomato domestication was thought to involve two major transitions, the first from small, wild Solanum pimpinellifolium L. (SP) to a semi-domesticated intermediate, S. lycoperiscum L. var. cerasiforme (SLC). The second was a transition from an intermediate group (SLC) to fully domesticated cultivated tomato (S. lycopersicum L. var. lycopersicum (SLL)).

Their genetic studies address the role of what they call a “historically contentious” and complex intermediate stage of tomato domestication, an essential chapter that should not be overlooked in the tomato’s long journey from wildness to domestication. Details appear in an Advanced Access edition of Molecular Biology and Evolution.

Razifard and colleagues, who created a public genomic variants dataset for this study, used whole-genome sequencing of wild, intermediate and domesticated (SP, SLC, and SLL) varieties, plus population genomic analyses to reconstruct tomato domestication, focusing on evolutionary changes especially in the intermediate stages (SLC). They generated new whole-genome sequences for 166 samples, with particular attention to intermediate variants from its native range and cultivated fruit from Mexico, previously under-represented in studies.

Razifard says, “We found that SLC may have originated in Ecuador around 80,000 years ago as a wild species rather than a domesticate. It was cultivated in Peru and Ecuador by native people later to create medium-size tomato fruits. We also found that two subgroups from the intermediate group may have spread northward to Central America and Mexico possibly as a weedy companion to other crops.”

“Remarkably, these northward extensions of SLC seem to have lost some of the domestication-related phenotypes present in South America. They still grow in milpas of Mexico, where people use them as food although not cultivating them intentionally,” he adds. Milpas are fields where farmers plant many different crops in the same area.

He and Caicedo note that an origin of the domestic tomato from weed-like ancestors was proposed in 1948 based on the many native names that exist for the weed-like tomato, in contrast to fewer names for the common cultivated tomato. This hypothesis was challenged by others who argued against Mexico as a center of tomato domestication due to the absence of completely wild tomatoes there.

Razifard says, “It’s still a mystery how tomatoes have moved northward. All we have is genetic evidence and no archaeological evidence because tomato seeds don’t preserve well in the archeological records.”

The researchers point out that exploring intermediate stages of tomato domestication has “direct implications for crop improvement.” For example, they observed some signals of selection in certain intermediate populations for alleles involved in disease resistance and drought tolerance, important, Razifard says, “Such evidence is useful for finding candidate alleles that can be used for creating disease-resistant and/or drought-tolerant tomatoes.” Other intermediate populations had higher beta-carotene or sugar content, attractive traits to consumers.

The evolutionary biologist says, “This is the kind of paper that Darwin would have enjoyed reading. He drew many of his insights on evolution from studying plants, especially crops. He corresponded extensively with botanists before he finalized his theory of evolution through natural selection.”

A postdoctoral researcher who did much of the population genomic analyses for this project, Razifard adds that he wants to support the movement in biology against “plant blindness,” the tendency to ignore the importance of plants in studying evolution as well as other subfields of biology. Also, he is from a minority Azerbaijani-speaking area of Iran and says, “This paper is special to me because it’s my first one with a female-majority author list. I feel lucky to be part of a generation that is changing science, and I hope this paper serves as a model for gender equity in STEM fields.”

###

Media Contact
Janet Lathrop
[email protected]
413-545-2989

Tags: BiologyEvolutionFood/Food ScienceGeneticsPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Triploidy Effects on Sea Bass Development Revealed

Triploidy Effects on Sea Bass Development Revealed

November 7, 2025
blank

Sexual Dimorphism in Serum Metabolites Post-Exercise

November 7, 2025

New Study Reveals How Variations Between Preclinical Models and Humans Can Predict Drug Toxicity

November 7, 2025

Recombination and Transposons Influence Chironomus riparius Diversity

November 7, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1301 shares
    Share 520 Tweet 325
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating the Eating Behavior and Appetite Questionnaire

Mindfulness Eases Anxiety, Improves Sleep for Caregivers

Neurogenic Dysfunction Syndrome Post-Acute Brain Injury

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.