• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Space-time metasurface makes light reflect only in one direction

Bioengineer by Bioengineer
December 20, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: by Xuexue Guo, Yimin Ding, Yao Duan, and Xingjie Ni


Light propagation is usually reciprocal meaning that the trajectory of light travelling in one direction is identical from that in the opposite direction. Breaking reciprocity can make light propagate only in one direction. Optical components that support such unidirectional flow of light, for example isolators and circulators, are indispensable building blocks in many modern laser and communication systems. They are currently almost exclusively based on the magneto-optic effect, making the devices bulky and difficult for integration. It is in great demand to have a magnetic-free route to achieve nonreciprocal light propagation in many optical applications.

Recently, scientists developed a new type of optical metasurface with which phase modulation in both space and time is imposed on the reflected light, leading to different paths for the forward and backward light propagation. For the first time, nonreciprocal light propagation in free space was realized experimentally at optical frequencies with such an ultrathin component.

“This is the first optical metasurface with controllable ultrafast time-varying properties that is capable of breaking optical reciprocity without a bulky magnet,” said Xingjie Ni, the Charles H. Fetter Assistant Professor in Department of Electrical Engineering at the Pennsylvania State University. The results were published this week in Light: Science and Applications.

The ultrathin metasurface consists of a silver back-reflector plate supporting block-shaped, silicon nanoantennas with large nonlinear Kerr index at near-infrared wavelengths around 860?nm. Heterodyne interference between two laser lines that are closely spaced in frequency was used to create efficient travelling-wave refractive index modulation upon the nanoantennas, which leads to ultrafast space-time phase modulation with unprecedentedly large temporal modulation frequency of about 2.8 THz. This dynamic modulation technique exhibits great flexibility in tuning both spatial and temporal modulation frequencies. Completely asymmetric reflections in forward and backward light propagations were achieved experimentally with a wide bandwidth around 5.77 THz within a sub-wavelength interaction length of 150 nm.

Light reflected by the space-time metasurface acquires a momentum shift induced by the spatial phase gradient as well as a frequency shift arisen from the temporal modulation. It exhibits asymmetric photonic conversions between forward and backward reflections. In addition, by exploiting unidirectional momentum transfer provided by the metasurface geometry, selective photonic conversions can be freely controlled by designing an undesired output state to lie in the forbidden, i.e. non-propagative, region.

This approach exhibits excellent flexibility in controlling light both in momentum and energy space. It will provide a new platform for exploring interesting physics arisen from time-dependent material properties and will open a new paradigm in the development of scalable, integratable, magnet-free nonreciprocal devices.

###

Media Contact
Xingjie Ni
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-019-0225-z

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring Black Hole Varieties: A Novel Approach Challenges Einstein’s Theory

Exploring Black Hole Varieties: A Novel Approach Challenges Einstein’s Theory

November 5, 2025
Co-electroreduction of CO and Glyoxal Yields C3 Products

Co-electroreduction of CO and Glyoxal Yields C3 Products

November 5, 2025

Plasma Treatment Enhances Antibacterial Performance of Silica-Based Materials

November 5, 2025

Biodegradable Cesium Nanosalts Trigger Anti-Tumor Immunity by Inducing Pyroptosis and Modulating Metabolism

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Prostate Volume Predicts Bladder Cancer Recurrence

Rewrite Oral doxapram for apnea of prematurity: A randomized dosage trial as a headline for a science magazine post, using no more than 8 words

Nomogram Predicts Infection Risk Post-Gastric Surgery

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.