• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers apply temperature gradients to grow and move liquid crystals

Bioengineer by Bioengineer
December 19, 2019
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Texas A&M University

Leading a double life as both solids and liquids, liquid crystals occupy center stage for creating smaller, faster and more efficient technologies. Even at the level of single particles, liquid crystals can bend light and react to external forces, like electric fields or physical pushes and pulls. And so, a tiny quantity of liquid crystals is usually enough to achieve high performance in many applications, ranging from monitor screens to solar panels.

But in order to fully tap into a liquid crystal’s wondrous properties, its constituent particles must be systematically assembled.

In a new study, Texas A&M University researchers have discovered that applying a small difference in temperature to a watered-down mixture of a compound called zirconium phosphate initiates its liquid crystallization. As zirconium phosphate particles move toward warmer temperatures, they start aligning themselves with each other and eventually turn into pure liquid crystals, the researchers said.

“Ours is the first proof-of-concept study to show that temperature gradient is an effective, yet simple, tool to assemble high-quality liquid crystals,” said Dr. Zhengdong Cheng, professor in the Artie McFerrin Department of Chemical Engineering. “Also, our results indicate that we can move liquid crystals by just varying temperature, a property that can potentially be used to transport liquid crystal particles from one place to another, thus paving the way for applications beyond those that are commonly associated with liquid crystals today.”

The researchers reported their findings in the October issue of the journal ACS Nano.

Liquid crystals represent a state of matter that lie somewhere between solids and liquids. Like molecules in solids that form crystals, those in liquid crystals are arranged in a semi-systematic fashion, like cars in a partly-full parking lot. But liquid crystals are also runny and can assume any shape like liquids. Furthermore, in their liquid crystal avatar, materials often show exotic properties. For example, they split up light beams or change their molecular alignments in response to electric fields.

But whether or not a material can assume a liquid crystal state depends on the overall shape of their constituent particles. Substances made up of spherical particles do not form liquid crystals. On the other hand, materials consisting of particles that are elongated like rods or flat like discs do form liquid crystals. Cheng and his team were particularly interested in zirconium phosphate because its disc-like particles have the ability to self-assemble into larger, flat 2D structures in their liquid crystalline state.

“Many particles found in nature, like red blood cells, nucleosomes and clay particles, are disc shaped and under the right circumstances, they can self-assemble into liquid crystals,” said Cheng. “So, we used zirconium phosphate as a proxy to investigate if there is a way to experimentally control the liquid crystallization of these particles.”

Zirconium phosphate has been shown to assemble into liquid crystals on its own if large enough quantities are added to water. But the resulting liquid crystals often have defects and are unstable. So, Cheng and his team came up with an alternative approach.

Cheng had shown previously that applying a temperature difference could make spherical particles assemble into clumps of crystals. Using the same principle, his team investigated if varying temperatures could be used to assemble zirconium phosphate into liquid crystals.

For their experiments, the Texas A&M team made a mixture of zirconium phosphate and water and filled it into thin, two-inch-long tubes, making sure that the quantity of zirconium phosphate was small enough to not trigger automatic liquid crystallization. Next, they applied heat in such a way that the temperature difference between either ends of the tube was around 10 degrees.

Within an hour, Cheng and his team found that the zirconium phosphate particles in the cooler end of the tube began to creep toward the warmer end, triggering liquid crystallization from the tube’s warmer end.

“Just like water in a boiling pot circulates from the bottom where it is hot to the top of the container where it’s cold, water in our tubes was also circulating from warmer to cooler temperatures,” said Dali Huang, graduate student in the Texas A&M College of Engineering and a primary author of the study. “Accordingly, the zirconium phosphate particles also moved in the direction of the water flow and arranged themselves into liquid crystals. “The researchers speculated that the push from the flowing water helps zirconium phosphate particles to position themselves systematically until they form liquid crystals. Also, they found that the liquid crystals created with temperature gradients were less defective than those formed by other methods.

Cheng noted that their findings open new doors for use in a variety of contexts.

“By virtue of their shape, disc-shaped particles have a larger surface area compared to their volume,” said Cheng. “If we think of the next generation of biomedical devices, for example, we can potentially take advantage of this geometry to load medicinal particles on their flat surfaces and then vary temperature to transport them to target a specific part of the body.”

###

Other contributors to the research include Dr. Abhijeet Shinde, Dali Huang, Mariela Saldivar, Hongfei Xu, Dr. Minxiang Zeng, Ugochukwu Okeibunor, Dr. Ling Wang, Carlos Mejia, Sasha George and Dr. Lecheng Zhang from the Texas A&M Department of Chemical Engineering; and Dr. Padetha Tin from the NASA Glenn Research Center, Ohio.

Media Contact
Amy Halbert
[email protected]
979-458-4243

Original Source

https://engineering.tamu.edu/news/2019/12/researchers-apply-temperature-gradients-to-grow-and-move-liquid-crystals.html

Related Journal Article

http://dx.doi.org/10.1021/acsnano.9b01573

Tags: Chemistry/Physics/Materials SciencesNanotechnology/Micromachines
Share12Tweet8Share2ShareShareShare2

Related Posts

Scientists Convert Plastic Waste into High-Performance CO2 Capture Materials

Scientists Convert Plastic Waste into High-Performance CO2 Capture Materials

September 5, 2025
Decoding Orderly and Disorderly Behavior in 2D Nanomaterials: Paving the Way for AI-Driven Custom Designs

Decoding Orderly and Disorderly Behavior in 2D Nanomaterials: Paving the Way for AI-Driven Custom Designs

September 5, 2025

Physicists Develop Visible Time Crystal for the First Time

September 5, 2025

Adaptive Visible-Infrared Camouflage Enables Wide-Spectrum Radiation Control for Extreme Temperature Environments

September 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Modified Coxsackie B1 Vaccine Induces Strong Antibody Response

Novel Non-Hormonal Biomaterial Shows Promise in Mitigating Vaginal Changes Linked to Menopause

Major Data Updates and New Study Broaden the Kids First Data Ecosystem

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.