• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

An alloy that retains its memory at high temperatures

Bioengineer by Bioengineer
December 3, 2019
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Material research

IMAGE

Credit: © RUB, Marquard


Using computer simulation, Alberto Ferrari calculated a design proposal for a shape memory alloy that retains its efficiency for a long time even at high temperatures. Alexander Paulsen manufactured it and experimentally confirmed the prediction. The alloy of titanium, tantalum and scandium is more than just a new high-temperature shape memory alloy. Rather, the research team from the Interdisciplinary Centre for Advanced Materials Simulation (Icams) and the Institute for Materials at Ruhr-Universität Bochum (RUB) has also demonstrated how theoretical predictions can be used to produce new materials more quickly. The group published its report in the journal Physical Review Materials from 21 October 2019. Their work was showcased as Editor’s suggestion.

Avoiding the unwanted phase

Shape memory alloys can re-establish their original shape after deformation when the temperature changes. This phenomenon is based on a transformation of the crystal lattice in which the atoms of the metals are arranged. Researchers refer to is as phase transformation. “In addition to the desired phases, there are also others that form permanently and considerably weaken or even completely destroy the shape memory effect,” explains Dr. Jan Frenzel from the Institute for Materials. The so-called omega phase occurs at a specific temperature, depending on the composition of the material. To date, many shape memory alloys for the high temperature range would withstand only a few deformations before they became unusable once the omega phase set in.

Promising shape memory alloys for high temperature applications are based on a mixture of titanium and tantalum. By changing the proportions of these metals in the alloy, researchers can determine the temperature at which the omega phase occurs. “However, while we can move this temperature upward, the temperature of the desired phase transformation is unfortunately lowered in the process,” says Jan Frenzel.

Admixture alters properties

The RUB researchers attempted to understand the mechanisms of the onset of the omega phase in detail, in order to find ways to improve the performance of shape memory alloys for the high-temperature range. To this end, Alberto Ferrari, PhD researcher at Icams, calculated the stability of the respective phases as a function of temperature for different compositions of titanium and tantalum. “He was able to use it to confirm the results of experiments,” points out Dr. Jutta Rogal from Icams.

In the next step, Alberto Ferrari simulated small amounts of third elements being added to the shape memory alloy of titanium and tantalum. He selected the candidates according to specific criteria, for example they should be as non-toxic as possible. It emerged that an admixture of a few percent of scandium would have to result in the alloy functioning for a long time even at high temperatures. “Even though scandium belongs to the rare earths and is, consequently, expensive, we only need very little of it, which is why it’s worth using anyway”, explains Jan Frenzel.

Prediction is accurate

Alexander Paulsen then produced the alloy calculated by Alberto Ferrari at the Institute for Materials and tested its properties in an experiment: the results confirmed the calculations. A microscopic examination of the samples later proved that even after many deformations no omega phase was found in the crystal lattice of the alloy. “We have thus expanded our basic knowledge of titanium-based shape memory alloys and developed possible new high-temperature shape memory alloys,” says Jan Frenzel. “Moreover, it’s great that the computer simulation predictions are so accurate.” Since the production of such alloys is very complex, the implementation of computer-aided design proposals for new materials promises much faster success.

###

Funding

The research was funded by the German Research Foundation as part of research group 1766 (project no. 200999873). Some of the calculations were performed using supercomputers by the Swedish National Infrastructure for Computing at National Supercomputer Centre (NSC) in Linköping and at the Center for High Performance Computing in Stockholm.

Original publication

Alberto Ferrari, Alexander Paulsen, Dennis Langenkämper, David Piorunek, Christoph Somsen, Jan Frenzel, Jutta Rogal, Gunther Eggeler, Ralf Drautz: Discovery of ω-free high-temperature Ti-Ta-X shape memory alloys from first-principles calculations, in: Physical Review Materials 2019, DOI: 10.1103/PhysRevMaterials.3.103605

Press contact

Dr. Jutta Rogal

Atomistic simulation of the kinetics of phase transformations

Interdisciplinary Centre for Advanced Materials Simulation

Ruhr-Universität Bochum

Phone: +49 234 32 29317

Email: [email protected]

Dr. Jan Frenzel

Chair for Materials Science and Engineering

Institute for Materials

Department of Mechanical Engineering

Ruhr-Universität Bochum

Phone: +49 234 32 22547

Email: [email protected]

Media Contact
Jan Frenzel
[email protected]
49-234-322-2547

Original Source

https://news.rub.de/english/press-releases/2019-12-03-material-research-alloy-retains-its-memory-high-temperatures

Related Journal Article

http://dx.doi.org/10.1103/PhysRevMaterials.3.103605

Tags: Mechanical EngineeringTechnology/Engineering/Computer ScienceTheory/Design
Share12Tweet8Share2ShareShareShare2

Related Posts

Preoperative MRI Improves Stage II-III Colon Cancer Outcomes

Preoperative MRI Improves Stage II-III Colon Cancer Outcomes

August 8, 2025
blank

Exome Analysis Reveals Genes Behind Kidney Malformations

August 8, 2025

Ultrasound Insights on Hip Dysplasia in Infants

August 8, 2025

Advanced Quinone Nanocomposites Boost Zinc-Ion Batteries

August 8, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    78 shares
    Share 31 Tweet 20
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    76 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    52 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Preoperative MRI Improves Stage II-III Colon Cancer Outcomes

Exome Analysis Reveals Genes Behind Kidney Malformations

Ultrasound Insights on Hip Dysplasia in Infants

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.