• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, January 14, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

What keeps cells in shape? New research points to 2 types of motion

Bioengineer by Bioengineer
November 26, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Christina M. Caragine and Alexandra Zidovska, New York University.


The health of cells is maintained, in part, by two types of movement of their nucleoli, a team of scientists has found. This dual motion within surrounding fluid, it reports, adds to our understanding of what contributes to healthy cellular function and points to how its disruption could affect human health.

“Nucleolar malfunction can lead to disease, including cancer,” explains Alexandra Zidovska, an assistant professor in New York University’s Department of Physics and the senior author of the study, which appears in the journal eLife. “Thus, understanding the processes responsible for the maintenance of nucleolar shape and motion might help in the creation of new diagnostics and therapies for certain human afflictions.”

Recent discoveries have shown that some cellular compartments don’t have membranes, which were previously seen as necessary to hold a cell together. Researchers have since sought to understand the forces that maintain the integrity of these building blocks of life absent these membranes.

What has been observed is the nature of this behavior. Specifically, these compartments act as liquid droplets made of a material that does not mix with the fluid around them–similar to oil and water. This process, known as liquid-liquid phase separation, has now been established as one of the key cellular organizing principles.

In their study, the researchers focused on the best known example of such cellular liquid droplet: the nucleolus, which resides inside the cell nucleus and is vital to cell’s protein synthesis.

“While the liquid-like nature of the nucleolus has been studied before, its relationship with the surrounding liquid is not known,” explains Zidovska, who co-authored the study with Christina Caragine, an NYU doctoral student, and Shannon Haley, an undergraduate in NYU’s College of Arts and Science at the time of the work and now a doctoral student at the University of California at Berkeley. “This relationship is particularly intriguing considering the surrounding liquid–the nucleoplasm–contains the entire human genome.”

Yet, unclear is how the two fluids interact with each other.

To better understand this dynamic, the scientists examined the motion and fusion of human nucleoli in live human cells, while monitoring their shape, size, and smoothness of their surface. The method for studying the fusion of the nucleolar droplets was created by the team in 2018 and reported in the journal Physical Review Letters.

Their latest study showed two types of nucleolar pair movements or “dances”: an unexpected correlated motion prior to their fusion and separate independent motion. Moreover, they found that the smoothness of the nucleolar interface is susceptible to both changes in gene expression and the packing state of the genome, which surrounds the nucleoli.

“Nucleolus, the biggest droplet found inside the cell nucleus, serves a very important role in human aging, stress response, and general protein synthesis while existing in this special state,” observes Zidovska. “Because nucleoli are surrounded by fluid that contains our genome, their movement stirs genes around them. Consequently, because the genome in the surrounding fluid and nucleoli exist in a sensitive balance, a change in one can influence the other. Disrupting this state can potentially lead to disease.”

###

This research was supported by grants from the National Institutes of Health (R00-GM104152) and the National Science Foundation (CAREER PHY-1554880, CMMI-1762506).

Media Contact
James Devitt
[email protected]
212-998-6808

Original Source

https://www.nyu.edu/about/news-publications/news/2019/november/what-keeps-cells-in-shape–new-research-points-to-two-types-of-m.html

Related Journal Article

http://dx.doi.org/10.7554/eLife.47533

Tags: BiologyCell BiologyMolecular Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Thermal [2+2] Cycloaddition Builds Gem-Difluoro Bicycloalkanes

January 13, 2026
blank

Cobalt-Catalyzed Thioester Coupling via Siloxycarbene

January 12, 2026

Advancing Alkene Chemistry: Homologative Difunctionalization Breakthrough

January 8, 2026

Biocompatible Ligand Enables Safe In-Cell Protein Arylation

January 8, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    73 shares
    Share 29 Tweet 18
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    52 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

G-Quadruplex Regulation: The Role of G-Loops

How Training Affects Brain Health in Overweight Teens

Refining Biomedical Engineering Immersion: Faculty Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.