• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Stabilizing sulfur cathode by single Li-ion channel polymer binder

Bioengineer by Bioengineer
November 22, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press

The growing demands on the high-performance energy-storage system for emerging technologies such as electric vehicles and artificial intelligence drive the development of high-performance batteries. As a promising candidate of next-generation batteries, Li-S batteries have been drawn much attention carrying a high specific capacity (1675 mAh g-1) and energy density (2600 Wh kg-1). However, the diffusion of polysulfide in electrolyte cause changes in the structure of the sulfur cathode during discharge-charge cycles, which greatly limits the commercial applications of Li-S batteries.

Polymer binder, as an essential component of electrode, acts to bond the active material and are related to the performance of batteries. Unfortunately, the conventional binder has failed to meet the requirements of emerging batteries. For example, the PVDF binder exhibits low ionic conductivity of Li-ions, poor mechanical stability, and almost none inhibition on the shuttle of polysulfide, these factors limit the applications of Li-S batteries. Therefore, an ideal polymer binder which overcomes the drawback of conventional binders is urgently needed for Li-S batteries.

In a new research published in the Beijing-based National Science Review, scientists at the Soochow Institute for Energy and Materials Innovations for Lithium-sulfur battery in Suzhou, China present the latest advances in Single Lithium-ion Channel Polymer Binder for Li-S battery. Co-authors Chaoqun Niu, Jie Liu, Xiaowei Shen, Jinqiu Zhou, Tao Qian and Chenglin Yan report a novel polymer binder with single lithium-ions channels allowing fast lithium-ions transport while blocking the shuttle of polysulfide anions. This study reports a new avenue to assemble a polymer binder with single lithium-ion channel for solving the serious problem of energy attenuation of Li-S batteries.

These scientists confirme the effect of the prepared polymer binder on Li-S batteries by monitoring polysulfide concentration in the electrolyte and device capacity retention in real time during the cycle. “The polymer binder is confirmed to effectively immobilize the shuttle effect of polysulfide intermediates by the in-situ UV-vis measurement.” “Moreover, the excellent adhesion and mechanical stability of prepared binder maintain the structure integrity of sulfide cathode after discharge-charge cycles. These results demonstrate that the promising improvement of Li-S battery by the prepared binder and we believe the reported polymer binder with single Li-ion channels is one of the most effective strategies for the high-energy Li-S batteries.”

###

This work was supported by National Natural Science Foundation of China, Natural Science Foundation of Jiangsu Province and Natural Science Foundation of Jiangsu Higher Education Instituions of China.

See the article:

Chaoqun Niu, Jie Liu, Xiaowei Shen, Jinqiu Zhou, Tao Qian and Chenglin Yan

Single Lithium-ion Channel Polymer Binder for Stabilizing Sulfur Cathodes

Natl Sci Rev 2019; https://doi.org/10.1093/nsr/nwz149

The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country’s rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.

Media Contact
Chenglin Yan
[email protected]

Related Journal Article

http://dx.doi.org/10.1093/nsr/nwz149

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.