• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers substantially boost sensitivity of terahertz gas analysis

Bioengineer by Bioengineer
November 21, 2019
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Development poised to improve spectroscopic analysis for environmental and medical applications

IMAGE

Credit: Francis Hindle, Université du Littoral-Côte d’Opale

WASHINGTON — A new advance promises to increase the sensitivity of high-resolution spectrometers that perform chemical analysis using terahertz wavelengths. This higher sensitivity could benefit many applications, such as analysis of the complex gas mixtures found in industrial emissions and detection of biomarkers of disease in the breath of patients. It could also lead to new ways to detect food spoilage through gas detection.

In Optica, The Optical Society’s (OSA) journal for high impact research, researchers led by Gaël Mouret from Université du Littoral-Côte d’Opale in France report a new high-performance optical cavity for terahertz frequencies. They used this cavity to demonstrate the first convincing cavity-enhanced spectroscopy performed with terahertz frequencies.

Terahertz frequencies lie between microwaves and infrared light waves on the electromagnetic spectrum. For spectroscopic gas analysis, terahertz frequencies improve the ability to distinguish between molecules in a sample and to detect a wide variety of molecules. However, the technology needed to make full use of these frequencies is still under development.

“Several studies have used terahertz frequencies to analyze industrial gases emitted into the atmosphere, but they have all been hindered by a lack of sensitivity,” said research team member Francis Hindle. “Our new optical cavity will expand the types of molecules that can be identified with terahertz gas-phase spectroscopy and improve the feasible detection level.”

Increasing sensitivity

The researchers used newly available components to construct a high-finesse terahertz optical cavity, an arrangement of mirrors and a waveguide that confines light so that it reflects multiple times. High-finesse optical cavities exhibit very low light loss and thus allow the light to bounce between the mirrors more times before exiting the cavity. The new components included a low-loss circular corrugated waveguide and two highly reflective photonic mirrors specially designed to work well at terahertz frequencies.

For cavity-enhanced spectroscopy, a gas mixture is placed in the optical cavity where it interacts with the light inside. The new cavity allows terahertz waves to bounce back and forth around 3000 times before exiting. This means that molecules under analysis interact with the terahertz frequencies over an effective distance of approximately 1 kilometer inside a resonator only 50 centimeters long. As the waves bounce around, they can be absorbed many times by any molecules that are present, allowing a very sensitive measurement.

“A cavity with this finesse has not previously been available at terahertz frequencies,” said Hindle. “This advance allows terahertz frequencies to be applied to many highly sensitive techniques already used in the infrared.”

Detecting rare molecules

To demonstrate cavity-enhanced spectroscopy of a gas with their new device, the researchers analyzed a sample of carbonyl sulfide gas, which is naturally found in the atmosphere. Although the gas sample contained many isotopes of carbonyl sulfide, the researchers were able to measure a very rare isotope present at a concentration of just one molecule per 50,000 molecules. Measuring the ratios of different chemical isotopes in a sample can be used to determine the source of a pollutant.

The researchers plan to expand the range of frequencies for the spectrometer so that it could be used to analyze even more complex molecules and mixtures.

“Our research shows that it is now possible to easily construct high-finesse terahertz cavities and use them for the measurement of gases at high resolution,” said Hindle. “This could contribute to improved monitoring of a large variety of gases present at very low amounts for applications from environmental and industrial pollution to medicine.”

###

Paper: F. Hindle, R. Bocquet, A. Pienkina, A Cuisset, G. Mouret, “Terahertz gas phase spectroscopy using a high finesse Fabry-Pérot cavity,” Optica, 6, 12, 1449-1454 (2019).

DOI: https://doi.org/10.1364/OPTICA.6.001449

About Optica

Optica is an open-access, journal dedicated to the rapid dissemination of high-impact peer-reviewed research across the entire spectrum of optics and photonics. Published monthly by The Optical Society (OSA), Optica provides a forum for pioneering research to be swiftly accessed by the international community, whether that research is theoretical or experimental, fundamental or applied. Optica maintains a distinguished editorial board of more than 60 associate editors from around the world and is overseen by Editor-in-Chief Alex Gaeta, Columbia University, USA. For more information, visit Optica.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org.

Media Contacts:

Aaron Cohen

(301) 633-6773

[email protected]

[email protected]

Media Contact
James Merrick
[email protected]
202-416-1994

Related Journal Article

http://dx.doi.org/10.1364/OPTICA.6.001449

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

On-Chip All-Dielectric Metasurface Enables Creation of Topological Exceptional Points

August 21, 2025
Versatile Reconfigurable Integrated Photonic Computing Chip Unveiled

Versatile Reconfigurable Integrated Photonic Computing Chip Unveiled

August 21, 2025

Chung-Ang University Researchers Develop Paper Electrode-Based Soft Robots That Crawl

August 21, 2025

‘Rosetta Stone’ of Code Enables Scientists to Execute Fundamental Quantum Computing Operations

August 21, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Maternal and Infant Gut Microbiota Linked to Infant Respiratory Infections

Wearable Devices Improve Parkinson’s Medication Adjustments: Trial

Beijing Tiantan Hospital Researchers Develop Innovative One-Stage Hybrid Surgery for Brain and Spine Tumors

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.