• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, January 17, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists develop near ambient pressure photoemission electron microscopy based on tunable deep-ultraviolet laser source

Bioengineer by Bioengineer
November 15, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Image by LIU Wansheng


A research group led by Prof. FU Qiang and Prof. BAO Xinhe at the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS) have developed near ambient pressure photoemission electron microscopy (AP-PEEM) with a tunable deep-ultraviolet (DUV) laser source as the excitation source.

They designed and constructed a two-stage accelerating electrical field, a three-stage differential pumping system, and a near ambient pressure sample cell. PEEM imaging was demonstrated on sample surfaces in gaseous atmospheres up to 1 mbar. Spatial resolution reached 30 nm under the near ambient pressure conditions. Moreover, samples could be cooled down to 150 K or heated up to 1000 K when imaging. These performances were all successfully demonstrated in the lab onsite in November 2019.

PEEM is a powerful surface imaging technique for studying dynamic processes on solid surfaces. Nowadays, all PEEM measurements need to be performed under ultra-high vacuum (UHV) conditions, which present a large “pressure gap” compared to real applications.

The newly developed AP-PEEM can work under nearly realistic working conditions, suggesting important applications in heterogeneous catalysis, energy conversion devices, environmental processes, and biological science.

The AP-PEEM is combined with the tunable DUV laser source developed by Technical Institute of Physics and Chemistry of CAS. The entire DUV-AP-PEEM system was developed and installed in the State Key Lab of Catalysis of DICP, requiring more than five years.

###

Media Contact
WANG Yongjin
[email protected]

Original Source

http://english.cas.cn/newsroom/research_news/chem/201911/t20191112_223157.shtml

Tags: Nanotechnology/MicromachinesTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Creating Synthetic Protein-Binding DNA Systems in Cells

January 17, 2026
blank

Chiral Catalysis Powers Rotary Molecular Motors

January 16, 2026

Selective GlcNAc to GalNAc Epimerization via Kinetic Control

January 15, 2026

Thermal [2+2] Cycloaddition Builds Gem-Difluoro Bicycloalkanes

January 13, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    77 shares
    Share 31 Tweet 19
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Genomic Insights into Iranian Very Early Onset IBD

Evaluating 3D Printed Acetaminophen Suppositories: Quality & Pharmacokinetics

Kefir Probiotics Improve Autism Symptoms in Children

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.