• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists develop near ambient pressure photoemission electron microscopy based on tunable deep-ultraviolet laser source

Bioengineer by Bioengineer
November 15, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Image by LIU Wansheng


A research group led by Prof. FU Qiang and Prof. BAO Xinhe at the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS) have developed near ambient pressure photoemission electron microscopy (AP-PEEM) with a tunable deep-ultraviolet (DUV) laser source as the excitation source.

They designed and constructed a two-stage accelerating electrical field, a three-stage differential pumping system, and a near ambient pressure sample cell. PEEM imaging was demonstrated on sample surfaces in gaseous atmospheres up to 1 mbar. Spatial resolution reached 30 nm under the near ambient pressure conditions. Moreover, samples could be cooled down to 150 K or heated up to 1000 K when imaging. These performances were all successfully demonstrated in the lab onsite in November 2019.

PEEM is a powerful surface imaging technique for studying dynamic processes on solid surfaces. Nowadays, all PEEM measurements need to be performed under ultra-high vacuum (UHV) conditions, which present a large “pressure gap” compared to real applications.

The newly developed AP-PEEM can work under nearly realistic working conditions, suggesting important applications in heterogeneous catalysis, energy conversion devices, environmental processes, and biological science.

The AP-PEEM is combined with the tunable DUV laser source developed by Technical Institute of Physics and Chemistry of CAS. The entire DUV-AP-PEEM system was developed and installed in the State Key Lab of Catalysis of DICP, requiring more than five years.

###

Media Contact
WANG Yongjin
[email protected]

Original Source

http://english.cas.cn/newsroom/research_news/chem/201911/t20191112_223157.shtml

Tags: Nanotechnology/MicromachinesTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Catalysis Technique Unlocks Diverse Library of Novel Molecules for Drug Discovery

Innovative Catalysis Technique Unlocks Diverse Library of Novel Molecules for Drug Discovery

September 3, 2025
blank

Decoding Catalyst Performance for Sustainable Green Hydrogen Production

September 3, 2025

Soft materials retain memories of their past states far longer than previously believed

September 3, 2025

New Particle Detector Successfully Passes Benchmark ‘Standard Candle’ Test

September 3, 2025
Please login to join discussion

POPULAR NEWS

  • Needlestick Injury Rates in Nurses and Students in Pakistan

    297 shares
    Share 119 Tweet 74
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    118 shares
    Share 47 Tweet 30

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Study Reveals Loneliness Harms Health and Wealth in the UK

3D-Printed Micro Ion Traps Advance Quantum Tech

The Grip of Doom: How Staph Bacteria Attach to Human Skin

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.