• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Rational transparent conductor design provides a boost to carbon nanotubes application

Bioengineer by Bioengineer
November 13, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Skoltech


An international team of scientists led by researchers from the Laboratory of Nanomaterials at the Skoltech Center for Photonics and Quantum Materials (CPQM) have rationally designed a novel p-type flexible transparent conductor using single-walled carbon nanotubes. This opens new avenues for its applications in next generation opto-electronics and energy technologies. The results of the study were published in the prestigious international journal Nano Energy.

Most of the optical and electronic devices encountered daily are constituted of transparent conductors. However, all the presently available transparent conductors are n-type semiconductors, thus restricting technological advancement. The emergence of carbon nanotubes as p-type transparent conductors has been promising. Its further development will be tremendously instrumental for various opto-electronics and energy technologies.

Scientists at the Skolkovo Institute of Science and Technology (Skoltech) chose to address this by developing a novel rational design of unifying a multilayered combination of films with carbon nanotubes, conductive polymers, transition metal oxides and carbon nanotube fibers.

The Skoltech team together with its partners from Aalto University (Finland), DLR Institute of Networked Energy Systems (Germany) and Tallinn University of Technology (Estonia) utilized this newly developed p-type transparent conductor in solar cells. “We discovered the use of thin multicomponent layers and the introduction of carbon nanotube fibers in a dramatic improvement in the p-type transparent conductor development. Moreover, carbon nanotube fibers by themselves can be used as a replacement for traditional metal contacts. However, the most fascinating result was the solar cells fabricated at room temperature using the developed p-type transparent conductor and amorphous silicon, which are classified specially as hybrid devices and yield a record power conversion efficiency (conversion efficiency of sunlight to electricity) of 8.8%. This is an effective 16% increase over the traditional amorphous silicon solar cells, thus highlighting the efficacy of the developed p-type transparent conductor. We have progressed from the initial 1.6% and 3.4% reported previously in 2016 and 2018 respectively to 8.8% in 2019 using our newly developed p-type transparent conductor for such hybrid thin film solar cells,” says the first author of the study and PhD Student at Skoltech, Pramod M. Rajanna.

“We have developed a p-type transparent conductor with a state-of-the-art sheet resistance of 17 Ω/sq at a transmittance of 90% in the middle of the visible spectrum and a high degree of mechanical flexibility. The newly developed conductor is certainly revolutionary for various single-walled carbon nanotube applications. We anticipate that this will open new avenues for its application in widespread technologies such as optoelectronics, photonics and energy,” explains Albert Nasibulin, Professor of RAS and Head of Skoltech’s Laboratory of Nanomaterials.

###

Media Contact
Alina Chernova
[email protected]
890-556-53633

Original Source

https://www.skoltech.ru/en/2019/11/rational-transparent-conductor-design-provides-a-boost-to-carbon-nanotubes-application/

Related Journal Article

http://dx.doi.org/10.1016/j.nanoen.2019.104183

Tags: Chemistry/Physics/Materials SciencesNanotechnology/Micromachines
Share12Tweet8Share2ShareShareShare2

Related Posts

Scientists Cultivate Pencil-Shaped Gold “Quantum Needles” in Breakthrough Discovery

Scientists Cultivate Pencil-Shaped Gold “Quantum Needles” in Breakthrough Discovery

September 5, 2025
Microwave-Assisted Synthesis of Biomass-Derived N-Doped Carbon Dots Advances Metal Ion Sensing Technology

Microwave-Assisted Synthesis of Biomass-Derived N-Doped Carbon Dots Advances Metal Ion Sensing Technology

September 5, 2025

Discovery of Protostellar Jets in Milky Way’s Outer Regions Unveils Universal Star Formation Processes

September 5, 2025

Electron-Acceptor Engineering Tunes Dye Excitation Dynamics for Optimal Synergistic Photodynamic and Mild-Photothermal Tumor Therapy

September 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Timing Breast Milk Storage to Support Babies’ Circadian Rhythms, New Research Suggests

Scientists Cultivate Pencil-Shaped Gold “Quantum Needles” in Breakthrough Discovery

Ultra-Compact Plasmonic Nanocavity Boosts Magnetic SHG

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.