• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

DNA technology as a novel strategy for delivery of anti-HIV antibodies

Bioengineer by Bioengineer
November 8, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Synthetic DMAbs allow for in vivo production of broadly neutralizing antibodies in preclinical studies

IMAGE

Credit: The Wistar Institute


PHILADELPHIA — (Nov. 8, 2019) — Scientists at The Wistar Institute applied synthetic DNA-based technology to drive in vivo production of broadly neutralizing anti-HIV antibodies in small and large-animal models, providing proof of concept for a simple and effective next generation approach to HIV prevention and therapy. These results were published online in the Journal of Clinical Investigation.

Despite exceptional advances in antiretroviral therapies, there remains a need for new preventive and therapeutic modalities to eliminate HIV infection. Researchers have isolated a number of very potent monoclonal antibodies from infected individuals that can neutralize a diverse array of HIV strains. Such monoclonal antibodies can be manufactured and administered as passive immunotherapy and represent a promising approach currently in early clinical studies.

Widespread use of recombinant monoclonal antibodies, though, remains limited by several factors related to their half-life of expression, production costs supporting high doses needed, temperature stability, formulation issues, and limitations in production of antibody combinations, among others.

“We developed the DMAb platform to allow for direct in vivo production of antibodies through synthetic DNA engineered to provide instructions to the body to make the desired antibodies,” said lead researcher David B. Weiner, Ph.D., executive vice president, director of the Vaccine & Immunotherapy Center and W.W. Smith Charitable Trust Professor in Cancer Research at Wistar. “Based on our early data, we suggest that this platform is worth further investigation as a new strategy for HIV antibody delivery.”

Weiner and collaborators engineered a panel of 16 DMAbs rederiving previously characterized broadly neutralizing antibodies into the DMAb format. These were studied in mice via injection using Cellectra adaptive electroporation to enhance the DNA uptake. Researchers observed rapid DMAb expression and sustained blood levels for several months. Furthermore, the in vivo-produced DMAbs displayed strong neutralization ability, comparable to the corresponding recombinant antibodies.

Since the HIV virus is capable of mutating to escape single antibody immunity, combinations of up to four different DMAbs were tested as a strategy to overcome resistance. Total in vivo levels of antibodies produced in combination were comparable to the sum of the levels of the same antibodies administered individually, showing that this platform is flexible and suited for combination therapies with multiple antibodies. Importantly, the data supported that the combination could block more HIV viruses than the single antibodies.

Researchers next explored HIV-1 DMAb delivery in a pilot non-human primate study that is more relevant for translation to humans. Expression was detected as early as three days post-administration of one or two combined DMAbs, which displayed peak activity by 14 days. Importantly, the serum from treated animals had high antiviral activity.

“Although still in early stage of development, DMAbs have significant potential as a tool for treatment of HIV and other diseases and, if successfully translated to the clinic, will provide multiple new avenues for immunotherapy,” said Weiner. “Translational animal studies and clinical development are likely to be a very active area of research providing important information over the next few years.”

###

Co-authors: Megan C. Wise from Inovio Pharmaceuticals and Ziyang Xu from The Wistar Institute are co-first authors. Other co-authors include: Edgar Tello-Ruiz, Aspen Trautz, Ami Patel, Sarah T.C. Elliott, Neethu Chokkalingam, Sophie Kim, Kar Muthumani, and Daniel W. Kulp from Wistar; Jingjing Jiang, Paul Fisher, Stephany J. Ramos, Trevor R.F. Smith, Janess Mendoza, Kate E. Broderick, and Laurent Humeau from Inovio; Charles Beck, Melissa G. Kerkau, Guido Ferrari, and David C. Montefiori from Duke University.

Work supported by: National Institutes of Health grant U19 Al109646-04 (Integrated Preclinical/Clinical AIDS Vaccine Development Program), The W.W. Smith Charitable Trust and grant 2528109374 from the Martin Delaney Collaboratory: Towards an HIV Cure.

Publication information: In vivo delivery of synthetic DNA-encoded antibodies induces broad HIV-1-neutralizing activity, Journal of Clinical Investigation (2019). Advanced online publication.

The Wistar Institute is an international leader in biomedical research with special expertise in cancer research and vaccine development. Founded in 1892 as the first independent nonprofit biomedical research institute in the United States, Wistar has held the prestigious Cancer Center designation from the National Cancer Institute since 1972. The Institute works actively to ensure that research advances move from the laboratory to the clinic as quickly as possible. wistar.org.

Media Contact
Darien Sutton
[email protected]
215-898-3988

Original Source

https://wistar.org/news/press-releases/synthetic-dna-technology-applied-novel-strategy-delivery-anti-hiv-antibodies

Related Journal Article

http://dx.doi.org/10.1172/JCI132779

Tags: Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Personalized Guide to Understanding and Reducing Chemicals

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.