• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientists develop method to standardize genetic data analysis

Bioengineer by Bioengineer
November 8, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: MIPT Press Office

MIPT researchers have collaborated with Atlas Biomedical Holding and developed a new bioinformatics data analysis method. The developed program, EphaGen, can be used for quality control when diagnosing genetic diseases. The team published the article in Nucleic Acid Research.

The mapping of the human genome in the early 21st century and understanding the nucleic acid sequence have provided ample opportunities for research on both genetic diseases and genetic predisposition. This has become possible after the development of next-generation sequencing, or NGS — new methods for determining a DNA sequence. They produce faster results in a less costly procedure and can be integrated into routine clinical practice.

While the diseases that can be caused by defects in several distinct DNA segments — called polygenic disorders — are still the province of researchers, DNA diagnostics of single-gene disorders associated with a defect in a specific DNA segment (known as Mendelian disorders) is now a standard of care in medical genetics.

The main challenge when using NGS data in clinical practice is the need for an unambiguous answer to whether a patient has a mutation. When a mutation is not detected, confidence that such findings are not associated with low data quality is required. Special quality metrics have been introduced to ensure this; however, they only provide indirect evidence of the presence or absence of a mutation.

Researchers from MIPT and Atlas have developed EphaGen software, which uses a new evaluation method to provide a straight answer to that question. Given a spectrum of the clinically relevant variants of interest, it associates these NGS data with a single parameter. Based on the inner algorithm, this parameter resembles diagnostic sensitivity and may thus be used to decide whether the collected data are suitable for clinical interpretation or not.

“Interpretation of laboratory data has become more complex due to the rapid introduction of new sequencing methods in clinical practice,” said the article’s lead author, Maxim Ivanov, a PhD student at the MIPT Department of Bioinformatics. “A doctor often wants a straight answer as to whether a mutation was detected or not. However, a laboratory is often unable to provide such an answer due to numerous ‘buts.’ Such as, ‘We have not detected a mutation, BUT we haven’t analyzed one gene, or the analysis of some genes was incomplete, or there was a technical failure in the analysis of certain regions of some genes.’ NGS is a large-scale technology, so a specific important DNA segment may remain unanalyzed, without this being noticed.”

“We have implemented an integral characteristic that will enable a doctor to assess the reliability of the ‘no mutation’ result, and will provide a unified language for communication between a clinician and the laboratory. And of course, there can be numerous other applications, too. As we demonstrated in our study, it may assist labs to perform head-to-head comparison between different technical solutions or detect the source of failure, and so on,” Ivanov added.

The developed EphaGen software provides a novel approach for performing measurement in routine clinical NGS testing and can be easily implemented into existing clinical workflows as a measure of quality control.

###

The research was conducted with the support of the Russian Foundation for Basic Research.

Media Contact
Varvara Bogomolova
[email protected]
7-916-147-4496

Original Source

https://mipt.ru/english/news/scientists_develop_method_to_standardize_genetic_data_analysis

Related Journal Article

http://dx.doi.org/10.1093/nar/gkz775

Tags: BiologyGenesGenetics
Share15Tweet9Share3ShareShareShare2

Related Posts

blank

Revolutionizing Multi-Sample Single-Cell RNA-seq Detection

October 6, 2025
blank

Revolutionizing Alkaloid Structural Analysis with an Innovative Metal–Organic Framework

October 6, 2025

Ant-Sheltered Tardigrades: A Unique Survival Strategy

October 6, 2025

Introducing E2E: A User-Friendly R Package for Building Ensemble Models with Ease

October 6, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    95 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    93 shares
    Share 37 Tweet 23
  • New Insights Suggest ALS May Be an Autoimmune Disease

    71 shares
    Share 28 Tweet 18
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    71 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Blockchain Audit Privacy with Hybrid Encryption

New Imidazole Compounds Fight Bladder Cancer

Integrating Self-Management and Exercise to Combat Sedentary Behavior

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.