• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Study finds key protein that binds to LDL cholesterol

Bioengineer by Bioengineer
November 21, 2016
in Science
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New Haven, Conn.– A Yale-led research team identified a protein that plays an important role in the buildup of LDL cholesterol in blood vessels. The finding could lead to an additional strategy to block LDL accumulation, which could help prevent or slow the clogging of arteries that leads to heart disease, the researchers said.

The study was published on Nov. 21 by Nature Communications.

Arteries become clogged with fats and cholesterol when certain proteins in the body, known as lipoproteins, combine with and transport fats in the blood to cells. Scientists have long believed that the LDL receptor molecule was responsible for the transport of LDL within cells. But given that some individuals lacking the LDL receptor still have high levels of LDL, questions remained about the mechanism.

To identify the mechanism, the research team screened more than 18,000 genes from the endothelium — the inner layer of human blood vessels. They examined the transfer of LDL into endothelial cells and then focused on possible genes involved in the process.

The researchers found that a protein called ALK1 facilitated LDL's pathway into cells. "We confirmed that ALK1 directly binds to LDL," said William C. Sessa, senior author and the Alfred Gilman Professor of Pharmacology and professor of medicine (cardiology). The team also determined that the "LDL-ALK1 pathway" aided the transport of LDL from blood into tissue.

The role of ALK1 in LDL accumulation was not previously known, said Sessa.

"The discovery of ALK1 as an LDL-binding protein implies that it might initiate the early phases of atherosclerosis," he noted. "If we can find a way of blocking ALK1 using small molecules or antibodies, it might be used in combination with lipid-lowering strategies."

Current lipid-lowering strategies include statins, which target LDL cholesterol levels in the blood.

A therapeutic that blocks ALK1 "would be a unique strategy for reducing the burden of atherosclerosis and be synergistic with lipid- lowering therapies," Sessa noted.

Heart disease caused by damage to blood vessels is the leading cause of death worldwide.

###

Other study authors include Jan R. Kraehling, John H. Chidlow, Chitra Rajagopal, Michael G. Sugiyama, Joseph W. Fowler, Monica Y. Lee, Xinbo Zhang, Cristina M. Ramírez, Eon Joo Park, Bo Tao, Keyang Chen, Leena Kuruvilla, Bruno Larrivee, Ewa Folta-Stogniew, Roxana Ola, Noemi Rotllan, Wenping Zhou, Michael W. Nagle, Joachim Herz, Kevin Jon Williams, Anne Eichmann, Warren L. Lee, and Carlos Fernández-Hernando.

Nagle is an employee of Pfizer Worldwide Research and Development, but the company had no in?uence in study design, data collection, and analyses. Other authors declare no competing financial interests.

The study was supported in part by the Yale Center for Molecular Discovery, the National Institutes of Health, and the American Heart Association's Innovative Research Grant and MERIT Grant.

Citation: Nature Communications.

Media Contact

Ziba Kashef
[email protected]
203-436-9317
@yale

http://www.yale.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Innovative Technology Developed to Precisely Control Pore Wall Crystallinity

Researchers Unleash Wireless Innovation to Transmit Vast Amounts of Data

Ultrasound Offers Targeted Drug Delivery with Reduced Side Effects

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.