• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

To avoid cassava disease, Tanzanian farmers can plant certain varieties in certain seasons

Bioengineer by Bioengineer
October 30, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Rudolph R. Shirima, et al.


A nutty-flavored, starchy root vegetable, cassava (also known as yuca) is one of the most drought-resistant crops and is a major source of calories and carbs for people in developing countries, serving as the primary food for more than 800 million people. However, the crop is vulnerable to virus diseases, such as cassava brown streak disease (CBSD), which poses the biggest threat to production in East and Central Africa.

CBSD typically spreads through the whitefly vector (Bemisia tabaci) or the common practice of using recycled stems from the previous season’s crop. Although the planting of clean seed would be an effective way for farmers to reduce CBSD, the seed is often not available and when it is available, it is too expensive. Instead, farmers use recycled planting materials which is sometimes infected with cassava brown streak ipomoviruses.

To understand how cassava virus disease builds up over repeated planting cycles, a team of Tanzania-based scientists conducted experiments in coastal Tanzania, where there are two planting seasons. The first, Masika, is the long rainy season from March to June and the second, Vuli, is the short rainy season from October to December. The researchers found that crops in each season saw a gradual loss of quality over time, but this degeneration varied between varieties and seasons.

“Overall, varieties that are susceptible to cassava brown streak disease (CBSD) had higher levels of degeneration than tolerant ones,” explained Rudolph Shirima, a researcher affiliated with the University of Dar es Salaam and the International Institute of Tropical Agriculture. “However, susceptible varieties planted in Masika degenerated much more slowly than when they were planted in Vuli, where most plants became infected and severely damaged after a single season.”

These results suggest that, with careful selection of healthy stems for replanting, it is possible to recycle susceptible varieties over several seasons without significant loss of quality if they are planted in Masika and where phytosanitary measures are applied. These findings also suggest that farmers should plant susceptible varieties during Masika and plant disease-resistant varieties during Vuli.

This is the first research to compare two planting seasons in a CBSD hot-spot location and clearly demonstrates the importance of planting date on disease spread. It is also the first paper to highlight the effects of recycling cassava planting material over several seasons. To learn more about these findings, read “Assessing the Degeneration of Cassava Under High-Virus Inoculum Conditions in Coastal Tanzania,” published in the October issue of Plant Disease.

“These findings are groundbreaking in the sense that they will revolutionize the way breeders’ materials are evaluated and provides guidance for improving cassava seed system,” says Shirima. “In fact, the authors are already working with researchers with these skills with the aim of developing degeneration models that will help to predict cassava disease degeneration outcomes for varieties with known levels of virus resistance.”

###

These findings may also be applicable to other root and tuber crops equally affected by virus diseases.

Media Contact
Ashley Bergman Carlin
[email protected]
651-994-3832

Related Journal Article

http://dx.doi.org/10.1094/PDIS-05-18-0750-RE

Tags: Agricultural Production/EconomicsAgricultureFertilizers/Pest ManagementFood/Food SciencePlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Why Do Some People Age Faster? Study Identifies Key Genes Involved

August 21, 2025
blank

Tidal Forces Spur the Rise of Urban Civilization in Southern Mesopotamia

August 20, 2025

UCF Scientist Validates Genetic Restoration Success in Florida Panthers

August 20, 2025

Researchers Engineer Cells to Develop Biological Qubits in Pioneering Multidisciplinary Breakthrough

August 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Groundbreaking Supernova Discovery Unveils the Inner Secrets of a Dying Star

Illuminating Tissue Origami: Harnessing Light to Explore and Manipulate Tissue Folding

Epilepsy Drugs Successfully Reverse Autism Symptoms in Mice, New Study Finds

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.