• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Insight-HXMT team releases new results on black hole and neutron star X-ray binaries

Bioengineer by Bioengineer
October 26, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Image by IHEP


Scientists with the Hard X-ray Modulation Telescope (Insight-HXMT) team presented their new results on black hole and neutron star X-ray binaries during a press conference held Oct. 25 at the first China Space Science Assembly in Xiamen.

X-ray binaries are binary stars that emit X-rays and are composed of a normal star and either a neutron star or black hole. The gravity of the very dense neutron star or black hole causes material from the normal star to fall toward it, creating a rapidly rotating accretion disk that emits intense X-ray radiation. X-ray binaries are an important research target for those trying to understand strong gravitational and magnetic fields and matter affected by them.

The Insight-XHMT scientists were able to study quasi-periodic oscillations (QPOs) in black hole X-ray binaries up to 100 keV, an increase from the previous upper limit of 30 keV. They revealed the energy dependence of QPO amplitude and centroid frequency ranges from 1-100 keV. These achievements exceed what was possible with previous satellites and open a new window for black hole studies.

A detailed timing study of the brightest persistent X-ray source Sco X-1 was also conducted using Insight-HXMT data. The results yielded three key insights: 1) All types of QPOs originate from non-thermal emissions; 2) The innermost region of the accretion disk is non-thermal in nature; and 3) The corona is nonhomogeneous geometrically.

For the first time, scientists observed the sudden change of accretion disk state when the X-ray intensity of a neutron star X-ray binary is at a certain value. This verified the theory, put forward nearly 50 years ago, that the radiation pressure of light causes structural mutation of the accretion disk.

In the past, corona cooling was detected from stacking a series of short Type I bursts that occurred during the low/hard state of a neutron star X-ray binary. The current study represents the first time to observe the rapid cooling of a very hot corona – usually at a high temperature of several hundred million degrees – via a “shower” of low-energy X-ray photons from a single thermonuclear burst on the surface of a neutron star. This method provides a nearly unique means for studying the physical properties and heating mechanism of the high-temperature corona. Also, the interaction between a thermonuclear burst and accretion disk detected in a single burst probably provides a new method for constraining the innermost radius of the accretion disk.

In addition, scientists confirmed that the energy of the X-ray cyclotron absorption line of the famous neutron star X-ray binary Her X-1 is no longer decreasing. The data prove that the magnetic field strength near the X-ray radiation area has become stable after nearly 20 years of slow decline.

Insight-HXMT, as China’s first X-ray astronomy satellite, has observed many black holes, neutron stars and gamma-ray bursts with high precision and cadence since it was launched on June 15, 2017. The satellite comprises three X-ray slat-collimated telescopes – the High-energy X-ray Telescope, the Medium-energy X-ray Telescope, and the Low-energy X-ray Telescope – as well as a space environment monitor.

So far, the satellite has carried out more than a thousand observations and generated 29 TB of scientific data. Altogether, more than 10 scientific papers have been accepted or published in main international astrophysical journals, with additional important research results still in the publication pipeline.

###

Media Contact
GUO Lijun
[email protected]

Tags: Chemistry/Physics/Materials SciencesParticle Physics
Share16Tweet10Share3ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Personalized Guide to Understanding and Reducing Chemicals

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.