• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, July 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

SwRI concept wins NREL energy storage prize

Bioengineer by Bioengineer
October 22, 2019
in Science News
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Approach aims to lower costs, construction time for building pumped storage reservoir dams

IMAGE

Credit: Southwest Research Institute


SAN ANTONIO — Oct. 22, 2019 — The FAST Commissioning for Pumped Storage Hydropower (PSH) prize competition selected a Southwest Research Institute PSH concept among its four grand prize winners.

The FAST prize — which stands for “Furthering Advancements to Shorten Time” Commissioning for PSH — aims to reduce commissioning times of PSH projects by half, while reducing both cost and risk. The National Renewable Energy Laboratory (NREL) administers and executes these prizes on behalf of the U.S. Department of Energy’s Water Power Technologies Office.

Electric power systems use PSH for load balancing. The method uses the gravitational potential energy of water, pumped from a lower-elevation to a higher-elevation reservoir using low-cost, off-peak surplus electric power to run the pumps. During periods of high electrical demand, the stored water is returned to the lower reservoir, driving turbines to produce electric power. Although the losses from the pumping process mean it consumes more energy than it generates, the system creates value by providing more electricity during periods of peak demand, when electricity prices are highest.

Selected from a field of 22 finalists, two SwRI concepts were among nine that moved on to the “incubation stage” of the competition. Following pitch presentations on October 8, SwRI was named one of the grand prize winners for its concept to lower the costs and construction time for building PSH reservoir dams.

“Our concept explores how to adapt a successful, but little-known 19th century steel dam construction technique to accelerate PSH development in the 21st century,” said Dr. Gordon Wittmeyer, a hydrologist in SwRI’s Chemistry and Chemical Engineering Division and the Institute lead for PSH. He is working with Dr. Biswajit Dasgupta, an SwRI structural engineer with significant experience in the hydropower industry, to develop a modular design concept for structural steel dams. The technique could cut dam construction costs by one-third and reduce construction schedules by half.

“It’s significant that the two SwRI concepts were both selected to move forward to the incubator stage of the competition,” said Eric Thompson, a program manager in SwRI’s Mechanical Engineering Division. He worked with SwRI’s Kevin Supak on the other concept. They analyzed the potential of using an array of shallow, interconnected reservoirs combined with packaged turbine units to reduce the PSH construction schedule, with the goal of bringing electric power to the grid sooner and improving the project return on investment and net value.

###

See a video overview of the project here: https://youtu.be/P0nCE0VKtSM.

For more information, visit https://www.swri.org/energy-storage-systems.

Media Contact
Deb Schmid
[email protected]
210-522-2254

Original Source

https://www.swri.org/press-release/nrel-energy-storage-prize-pumped-storage-reservoir-dams

Tags: Civil EngineeringEarth ScienceEnergy SourcesEnergy/Fuel (non-petroleum)Hydrology/Water Resources
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Advanced Pressure-Velocity Patch Enhances Flight Detection

July 27, 2025
blank

Durable, Flexible Electrochemical Transistors via Electropolymerized PEDOT

July 26, 2025

Challenges and Opportunities in High-Filled Polymer Manufacturing

July 26, 2025

Epicardial Fat: Protector or Threat to Heart Health?

July 26, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    52 shares
    Share 21 Tweet 13
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advanced Pressure-Velocity Patch Enhances Flight Detection

Durable, Flexible Electrochemical Transistors via Electropolymerized PEDOT

Challenges and Opportunities in High-Filled Polymer Manufacturing

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.