• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Bacteria communicate to ramp up collective immune response to viral threats

Bioengineer by Bioengineer
November 18, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Bacteria can boost their own immune systems by "talking" to each other, surprising new research from New Zealand's University of Otago shows.

The findings by a team led by Associate Professor Peter Fineran of the Department of Microbiology and Immunology appear in the international journal Molecular Cell.

Associate Professor Fineran says that in the same way that humans are susceptible to viruses like influenza and measles, bacteria also need to defend themselves against viruses.

"As humans, we have evolved sophisticated immune systems that enable our bodies to fight the viral infections that render us ill. Amazingly, bacteria – although single celled organisms – often possess similar adaptive immunity called CRISPR-Cas systems. But the way that these CRISPR-Cas systems function is very much different to our own immune systems," he says.

His team's research provides new insight into how groups of bacteria collectively defend against viral threats.

"People have long understood the advantages of living in communities and bacteria are no different, often residing in close quarters to share resources. However, there are also potential drawbacks to community life as high-density bacterial populations are more vulnerable to the spread of viruses – just like people in a crowded bus or a daycare centre," he says.

The breakthrough came when the researchers discovered that the ability of bacteria to gauge the number of cells in their communities enabled the bacteria to boost the power of their CRISPR-Cas immune systems to prevent viral outbreaks.

Associate Professor Fineran says the bacteria sense the population density by "talking" to each other using a form of chemical communication known as quorum sensing.

"The higher the population density, the stronger the communication between cells becomes, which results in greater coordination of immune defenses," he says.

Adrian Patterson, a PhD student and first author on the paper, says the study shows that bacterial cells preemptively elevate their immunity when they are most at risk of a virus spreading through the population.

"They both increase their ability to generate new immune memories and strengthen existing immunity by up to 500-fold," Mr Patterson says.

The role of CRISPR-Cas in providing bacteria with viral immunity was only discovered in the past decade.

The systems create genetic memories of specific past viral infections by taking little snippets of the viruses' DNA and storing them in memory banks to aid in recognising and destroying future infections.

One of the least understood aspects of the CRISPR-Cas field is how bacteria control the activity of these systems. Too much activity can result in an autoimmune-like disease, killing the host cell, but too little activity might allow viruses to wipe out entire bacterial communities. The team's research shows that by openly communicating with each other, bacteria strike the right balance between these two outcomes.

Dr Simon Jackson, second author of the study, says bacterial immune systems are fascinating to study.

"Lately we have made significant advances in understanding how they function. The really exciting part of our most recent discovery is that we predict the communication-based coordination of CRISPR-Cas immunity to be widespread throughout bacterial species."

###

Media Contact

Peter Fineran
[email protected]
@otago

http://www.otago.ac.nz

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Retinal Imaging: A New Lens on Brain Health

August 26, 2025
blank

Spine Structure and Venom Extraction in Fish

August 26, 2025

Perirenal Fat: Key Player in Obesity Diversity

August 26, 2025

Unlocking Bacterial Memory: A Potential Breakthrough Against Life-Threatening Pathogens

August 26, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    147 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Retinal Imaging: A New Lens on Brain Health

Spine Structure and Venom Extraction in Fish

Perirenal Fat: Key Player in Obesity Diversity

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.