• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

What happens as solid-state batteries begin to fail?

Bioengineer by Bioengineer
October 10, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers say $1 million project will improve understanding, optimization

IMAGE

Credit: University of Houston


Solid-state lithium batteries have generated interest because they don’t carry the same risk of fire and explosion as conventional batteries with liquid electrolytes, but full-scale commercialization has been slowed, in part, because scientists don’t fully understand what causes the batteries to fail.

Not knowing what has gone wrong makes it more difficult to optimize the batteries so they work more efficiently for longer periods of time.

Yan Yao, associate professor of electrical and computer engineering at the University of Houston, said most battery research has focused on developing new materials and design. But current diagnostic tools aren’t compatible with solid-state batteries, leaving fundamental questions.

“When a solid-state battery cell dies, what has gone wrong?” Yao asked. Yao is principal investigator for a $1 million project funded by the U.S. Department of Energy to develop a new platform to study the chemical, structural and mechanical interactions at the interface between a battery’s solid electrolyte and the cathode and anode. The project involves researchers from UH and Rice University.

The work will provide fundamental insights into interactions at the interface but ultimately will be useful for applications including drones and electric vehicles, said Yao, who is also a principal investigator at the Texas Center for Superconductivity at UH.

Being able to see and record the interactions at the interface – using tools including secondary ion mass spectrometry, focused ion beam scanning electron microscopy, in-SEM nanoindentations and atomic force microscopy – will allow the researchers to watch in real time as solid-state battery performance changes.

Zheng Fan, assistant professor of engineering technology at UH and a co-PI on the project, said the researchers will build a small battery cell prototype to use in the project. The microcell will be subjected to changes in temperature, pressure and current flow as the tools measure reactions at the interface.

“It is a human instinct,” Fan said. “We want to see what happens.”

Yanliang “Leonard” Liang, research assistant professor of electrical and computer engineering at UH, said the resulting analysis will provide valuable information about how solid-state batteries perform, information that can be used to improve battery performance and reduce the risk of failure. Liang is also a co-PI for the project.

Solid-state batteries aren’t flammable, making them safer than traditional lithium ion batteries, he said. “But they are also different, and scientists don’t know enough about them.”

In addition to Yao, Fan and Liang, researchers on the project include Jun Lou and Hua Guo, both with the Department of Materials Science and NanoEngineering at Rice University.

Yao notes that the resulting diagnostic platform will be useful not just for researchers in his lab but for others working to improve solid-state batteries.

###

Media Contact
Jeannie Kever
[email protected]
713-743-0778

Original Source

http://www.uh.edu/news-events/stories/2019/october-2019/10102019-yao-doe-lithium.php

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)Technology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

SwRI Enhances Metering Research Facility to Advance Hydrogen Research and Testing

SwRI Enhances Metering Research Facility to Advance Hydrogen Research and Testing

November 11, 2025
Engineers Harness Electricity to Eliminate Ice Without Heat or Chemicals

Engineers Harness Electricity to Eliminate Ice Without Heat or Chemicals

November 11, 2025

Ni-Electrocatalysis Builds 1,1-Diaryl Cyclobutanes, Azetidines, Oxetanes

November 11, 2025

Hidden Catalysis: Everyday Lab Gear Turns into Powerful Reagents Through Abrasion

November 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    208 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    140 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1305 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Telehealth Transition for Psychosocial Oncology During COVID-19

AI-Driven Minimally Invasive Biliary Atresia Diagnosis

Unraveling Barrett’s Oesophagus and Cancer Diversity

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.