• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, January 15, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers synthesize new liquid crystals allowing directed transmission of electricity

Bioengineer by Bioengineer
October 1, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Organic power cable for electronic components

IMAGE

Credit: Ill./©: Natalie Tober, JGU

Liquid and solid – most people are unaware that there can be states in between. Liquid crystals are representative of one such state. While the molecules in liquids swim around at random, neighboring molecules in liquid crystals are aligned as in regular crystal grids, but the material is still liquid. Liquid crystals are thus an example of an intermediate state that is neither really solid nor really liquid¬¬. They flow like a liquid, and yet their molecules are grouped in small, regularly ordered units. A particular application of liquid crystals is optical imaging technology as in the screens of televisions, smartphones, and calculators. All LCD – or liquid crystal display – devices use these molecules.

Researchers at the Institute of Organic Chemistry at Johannes Gutenberg University Mainz (JGU) have synthesized novel liquid crystals in a project sponsored by the German Research Foundation (DFG). “If you slowly cool our liquid crystalline materials, the molecules align in a self-assembly process to form columns,” explained Professor Heiner Detert of JGU. “We can imagine these columns like piles of beer mats stacked one on top of the other. But the special thing is that these columns conduct electrical energy along their whole length.” The materials can thus serve as organic, liquid crystalline “power cables” and provide targeted electricity transmission in electronic components. While most materials conduct positive charges carried by holes, the new molecules actually conduct electrons. An additional advantage of a liquid crystalline power cable is that if it ruptures, any such rupture will heal entirely by itself.

The researchers have identified a particularly interesting effect exhibited by their synthesized molecules: If a single molecule is stimulated by exposure to UV light, it will glow in response. If the concentration of the molecule increases, this effect disappears only to reappear again when the concentration continues to increase. If the molecules are suspended in a solvent or arranged on a film, they will fluoresce in various colors when irradiated with UV light.

Detert and his team together with Professor Matthias Lehmann of the Julius-Maximilians-Universität Würzburg recently published their results in Chemistry – A European Journal. Experts classified the research results as exceptionally significant and the journal editors selected the article as a Hot Paper. The lead author, Natalie Tober, is supported by a scholarship awarded by the Carl Zeiss Foundation.

###

Media Contact
Heiner Detert
[email protected]

Original Source

https://www.uni-mainz.de/presse/aktuell/9549_ENG_HTML.php

Related Journal Article

http://dx.doi.org/10.1002/chem.201902975

Tags: BiochemistryChemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Selective GlcNAc to GalNAc Epimerization via Kinetic Control

Selective GlcNAc to GalNAc Epimerization via Kinetic Control

January 15, 2026
blank

Thermal [2+2] Cycloaddition Builds Gem-Difluoro Bicycloalkanes

January 13, 2026

Cobalt-Catalyzed Thioester Coupling via Siloxycarbene

January 12, 2026

Advancing Alkene Chemistry: Homologative Difunctionalization Breakthrough

January 8, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    76 shares
    Share 30 Tweet 19
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Caffeine’s Neuroprotective Role in Preterm Infants

Predicting Early Breast Cancer: Microcalcifications and Risk Factors

Pectin-Stiffening Regulates Grass Stomata Opening

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.