• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

SwRI team designs two-dimensional radar reflector to measure subtle ground movement

Bioengineer by Bioengineer
September 30, 2019
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Technology now available to support infrastructure monitoring, climate, military applications

IMAGE

Credit: Southwest Research Institute

SAN ANTONIO — Sept. 30, 2019 — A Southwest Research Institute science and engineering team designed a two-dimensional radar retroreflector that remotely monitors subtle shifts in the Earth’s crust. The patent-pending Van Atta retroreflector works in conjunction with satellites to precisely measure ground movement caused by earthquakes, oil production, mining and other processes. Movement can pose a risk to critical infrastructure such as nuclear facilities, airports and bridges.

“By monitoring shifts in the Earth’s crust, emergency managers, city leaders or anyone with an interest in community safety can detect and anticipate instabilities in a particular area,” said SwRI Senior Research Scientist Dr. Marius Necsoiu who created the Van Atta retroreflector concept with support from SwRI engineers Emilio Martinez and B. David Moore. “This allows proactive planning and solutions to address unstable ground.”

The Van Atta retroreflector incorporates an antenna array patented by Dr. L.C. Van Atta in 1959. His unique array design sends energy back in the direction of arrival over a wide range of angles. SwRI’s Van Atta retroreflector merges Van Atta’s principles with radar interferometry, a satellite-based method of measuring ground movement with radar signals. When monitored over time, the reflected signals show whether the ground in a particular location is shifting, detecting even slight movement.

“Analyzing subtle changes from space requires markers on the ground that don’t change over time,” Necsoiu said. “The compact Van Atta retroreflector provides that consistency. The flat design allows secure, flush mounting to structures or the ground. In addition, the retroreflector can withstand a range of challenging environments and temperatures, making it ideal for this type of data collection.”

Traditional, three-dimensional reflectors, known as corner reflectors, are bulky and susceptible to damage or vandalism. The Van Atta retroreflector panels, which measure less than 1 foot x 1 foot, can be painted to match any surface and configured in various patterns, making them easier to conceal and less prone to damage. Additional applications include measuring changes in natural formations such as rock glaciers, and military tracking and communication.

“When attached to outdoor equipment, the Van Atta retroreflector acts as a tracker of any subsequent movement. Commercial radio frequency imaging satellites can locate and identify marked objects anywhere on the globe, day or night and in all weather,” said James Moryl, director of SwRI’s Radio Frequency Sensors and Systems Department. “The reflector can also work in conjunction with a handheld or drone-mounted reader. The Van Atta technology provides a longer operating range and wider coverage area than competing commercial and military tracking solutions.”

SwRI’s Van Atta retroreflector can be adapted for a range of frequencies, making it compatible with any satellite, drone or radio device. This technology is currently available for government and industry projects.

###

For more information, visit https://www.swri.org/optical-radar-remote-sensing.

Media Contact
Lisa M. Pena
[email protected]

Original Source

https://www.swri.org/press-release/ground-movement-measurement-radar-reflector-van-atta

Tags: Biomedical/Environmental/Chemical EngineeringCivil EngineeringResearch/DevelopmentSatellite Missions/ShuttlesTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Metformin’s Potential Role in Breast Cancer

August 21, 2025
blank

Nerve Injury from Cancer Fuels Anti-PD-1 Resistance

August 21, 2025

Nanosecond Perovskite Quantum Dot LEDs Revolutionize Displays

August 21, 2025

Pediatric AKI: Biomarkers and AI Transform Detection

August 21, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Metformin’s Potential Role in Breast Cancer

Nerve Injury from Cancer Fuels Anti-PD-1 Resistance

Nanosecond Perovskite Quantum Dot LEDs Revolutionize Displays

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.