• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Illinois researchers create first three-photon color-entangled W state

Bioengineer by Bioengineer
September 23, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Illinois Grainger College of Engineering

Researchers at the University of Illinois at Urbana-Champaign have constructed a quantum-mechanical state in which the colors of three photons are entangled with each other. The state is a special combination, called a W state, that retains some entanglement even if one of the three photons is lost, which makes it useful for quantum communication. Such entangled states also enable novel quantum applications and tests of fundamental physics.

The uniqueness of this work is that the researchers used color, or the energy of the photons, as the entangling degree of freedom, while previous work used polarization. The energy of a photon cannot be easily changed, which reduces the possibility of errors when the energy-entangled W state is propagating over a long distance. The state was verified for the first time by measuring information about the two-photon sub-systems.

“People have created polarization-entangled W states before,” noted Bin Fang, the graduate student on the project. “However, this is the first discrete energy-entangled W state and the first three-photon entangled state created in optical fiber.”

To create the state, the researchers shine a laser into a glass fiber. Through a process called spontaneous four-wave mixing, four laser photons interact with the fiber and are annihilated to create two pairs of photons at different colors (for example, two pairs of red and green photons). These four photons are used to construct the 3-photon W state. One of them is detected to be green, leaving the other three entangled as a W state, which is comprised of all possible iterations of two red photons and a green photon at once.

The illustration that the researchers use is that of traffic lights.

“Like three traffic lights that always signal two stops and a go, the photons’ colors always end up being two reds and a green, but the specific combination is not set until we make a measurement – a feature of the quantum mechanical nature of photons,” said Virginia Lorenz, associate professor of physics and the principal investigator.

Compared to other types of three-particle entanglement, the W state is useful for quantum communication in that, if one of the photons is lost, the other two retain some entanglement, meaning the communication is able to continue.

“Another new aspect of this research is that we found a path to verify the state is the one we aimed for that circumvents a complicated color conversion step, ” said Lorenz. “Our theorist collaborators came up with a way to fairly straightforwardly show that the W state exists.”

###

Media Contact
Virginia Lorenz
[email protected]

Original Source

https://grainger.illinois.edu/news/34411

Related Journal Article

http://dx.doi.org/10.1103/PhysRevLett.123.070508

Tags: Atomic PhysicsAtomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesMolecular PhysicsTelecommunications
Share14Tweet9Share2ShareShareShare2

Related Posts

Innovative Supramolecular Crystals Unlock High-Capacity Hydrogen Storage

Innovative Supramolecular Crystals Unlock High-Capacity Hydrogen Storage

August 11, 2025
blank

Key Biophysical Rules for Mini-Protein Endosomal Escape

August 10, 2025

Uranium Complex Converts Dinitrogen to Ammonia Catalytically

August 10, 2025

Al–Salen Catalyst Powers Enantioselective Photocyclization

August 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    139 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    78 shares
    Share 31 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    57 shares
    Share 23 Tweet 14
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Establishing Trust in a Skeptical Digital Landscape: The Impact of an Estonian Researcher’s Work on Verifiable Truth

Maximizing Potato Yields: Balancing Growth and Defense Strategies

New Cancer Drug Enhances Chemotherapy Success, Overcoming Resistance in Tumors

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.