• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Palmer amaranth’s molecular secrets reveal troubling potential

Bioengineer by Bioengineer
September 16, 2019
in Biology
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Pat Tranel, University of Illinois

URBANA, Ill. – Corn, soybean, and cotton farmers shudder at the thought of Palmer amaranth invading their fields. The aggressive cousin of waterhemp – itself a formidable adversary – grows extremely rapidly, produces hundreds of thousands of seeds per plant, and is resistant to multiple classes of herbicides, including glyphosate.

Palmer’s resistance to PPO-inhibiting herbicides, a group of chemicals that disrupt chlorophyll synthesis, is especially problematic with glyphosate out of the picture. Farmers had been turning to PPO-inhibitors as an effective alternative, until resistance was discovered in waterhemp in 2001 and in Palmer in 2011.

Pat Tranel from the University of Illinois has been working to understand the mechanisms of resistance to PPO-inhibitors for years, and was the first to discover key mutations in both weed species. Now, in two new studies, he goes farther to explain Palmer’s evil genius.

“We knew Palmer had the same molecular mechanism as waterhemp to resist PPO-inhibitors, a genetic mutation known as the gly-210 deletion, and at least one more. Now we know that it evolved the gly-210 deletion independently, rather than picking it up through hybridization with waterhemp,” says Tranel, associate head and professor of molecular weed science in the Department of Crop Sciences at U of I.

This is important in two ways. It’s good news that scientists aren’t finding evidence of hybridization between the two superweeds, at least not so far. But the fact that Palmer evolved the same mutation independently, and at least one more to boot, shows just how wily the weed is.

Tranel and his team determined the evolutionary origins of the gly-210 mutation by looking at the genetics of resistant plants of both species that were growing together in a Kentucky field. Being in close proximity for several years should have provided opportunity for hybridization, if it was going to happen.

“We know from lab experiments that they are capable of hybridizing, so the fact that it’s not happening in the field is a good thing. The more they can and do hybridize, the more concerns we’d have,” Tranel says.

Only about a third of the Palmer plants in the Kentucky field had the gly-210 deletion. The rest were using a different mutation – an arginine substitution – to ward off PPO-inhibitor damage.

“The finding that this population of Palmer has two different mutations is a concern because if you look forward in the future, Palmer is well positioned to deal with future PPO chemistries. It can use whichever is more effective against a new PPO.

“It’s also well positioned to combine the two mutations to create a double mutant, with both mutations on the same copy of the chromosome. Chemistry designed to kill plants with the gly-210 deletion won’t be able to kill double mutants,” Tranel says. “In my opinion, it’s just a matter of time until we see double mutants in the field.”

Tranel’s second new study explains why Palmer amaranth took a decade longer than waterhemp to develop the gly-210 deletion, and reveals another diabolical truth about the species: Palmer amaranth appears to be naturally tolerant to post-emergence PPO-inhibitor application.

It has long been recognized that the timing of post-emergence PPO application is especially critical for Palmer amaranth, relative to waterhemp. If Palmer plants aren’t sprayed before they reach about 4 inches, it’s all over.

“If you wait too long, you miss ’em. And too long can be a matter of a single day because Palmer grows so fast. It can go from a 4-inch plant where you could control it to a 6-inch plant literally in a day,” Tranel says.

For Tranel, the pattern suggests a natural tolerance to post-emergence PPO-inhibitors. Tolerance describes the ability of a species to handle a substance, in this case PPO herbicides. Resistance, on the other hand, happens at the population level; localized populations of the species evolve mutations in response to repeated exposure to the substance. For example, corn is tolerant to atrazine. It can handle being sprayed and doesn’t need to evolve a mutation to handle it in a particular population.

The idea is that Palmer amaranth has a natural tolerance to PPO inhibitors and didn’t need to develop resistance. That’s why it took longer to evolve the gly-210 mutation. But, until now, no one had specifically studied Palmer’s tolerance to the chemistry before.

Tranel confirmed it by growing Palmer and waterhemp plants with and without the gly-210 mutation side-by-side and applying different formulations of pre-emergence and post-emergence PPO-inhibitors. The post-emergence applications were done early (smaller than 4 inches) or late (taller than 4 inches).

“We found that ‘sensitive’ Palmer plants without the mutation survived just as well as resistant waterhemp when sprayed post-emergence,” Tranel says.

On the other hand, the research team found that pre-emergence formulations effectively controlled both species.

“The difference in tolerance between Palmer and waterhemp goes away at the pre-emergence stage,” Tranel says. “Ultimately, that’s the take-home message here. If you’re dealing with these weeds, especially Palmer amaranth, and you want to incorporate a PPO-inhibitor as an alternative effective mode of action, you’ll have much better luck if you use it in a pre-emergence application.”

###

The studies are published in Weed Science [DOI: 10.1017/wsc.2019.41] and Weed Technology [DOI: 10.1017/wet.2019.84]. Kathryn J. Lillie, Darci A. Giacomini, and Patrick J. Tranel, all from the College of Agricultural, Consumer and Environmental Sciences at Illinois, were authors on both papers. Jonathan D. Green of the University of Kentucky was an additional co-author on the Weed Science paper. The Weed Technology study was partially funded by Valent U.S.A.

Media Contact
Lauren Quinn
[email protected]

Original Source

https://aces.illinois.edu/news/palmer-amaranths-molecular-secrets-reveal-troubling-potential-0

Related Journal Article

http://dx.doi.org/10.1017/wsc.2019.41

Tags: Agricultural Production/EconomicsAgricultureBiologyEcology/EnvironmentEvolutionFertilizers/Pest ManagementGenesGeneticsPlant Sciences
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Wiley Integrates Support for Nanalysis NMR Instruments in KnowItAll 2026

October 7, 2025
Illegal Cannabis Cultivation Imprints Persistent Chemical Residues on California’s Public Lands

Illegal Cannabis Cultivation Imprints Persistent Chemical Residues on California’s Public Lands

October 7, 2025

Salt Tolerance Mechanism of Desertifilum salkalinema Unveiled

October 7, 2025

Ginger Genome Identifies SMPED1 Gene Controlling Flowering

October 7, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    732 shares
    Share 292 Tweet 183
  • New Study Reveals the Science Behind Exercise and Weight Loss

    97 shares
    Share 39 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    94 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    76 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mobile HIV Care for Youth: Feasibility and Reach

Scaling Complex Molecular Reactions with Hybrid AI Models

Pneumococcal Serotype 3 Evolves During Year-Long Carriage

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.