• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Improving heat recycling with the thermodiffusion effect

Bioengineer by Bioengineer
July 15, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Numerical simulations of the thermodiffusion effect within falling film absorbers reveal that thin films composed of liquid mixtures with negative thermodiffusion coefficients enhance the efficiency of heat recycling

Absorption heat transformers can effectively reuse the waste heat generated in various industries. In these devices, specialised liquids form thin films as they flow downward due to gravity. These liquid films can absorb vapour, and the heat is then extracted by a coolant so that it can be used in future processes. So far, however, there has been little research into how the performance of these films is influenced by the thermodiffusion effect – a behaviour seen in mixtures, where different types of mixture respond differently to the same temperature gradient. In a study recently published in EPJ E, researchers from the Fluid Mechanics group at Mondragon University and Tecnalia in Spain, led by M. M. Bou-Ali at Mondragon University, pooled their expertise in transport phenomena and absorption technology. Together, they explored for the first time the influence of the thermodiffusion property on the absorption, temperature and concentration profiles of falling films.

With the industrial sector currently producing vast amounts of waste heat, the study is part of a growing effort to increase its efficiency by recycling unused heat. The researchers discovered that when the mass transfer of different mixture components varies due to the thermodiffusion effect, as is seen in a liquid with a negative thermodiffusion coefficient (water-lithium bromide), the absorption of surrounding vapours can be increased. They also found that the absorption in the films changes significantly as they flow down, due to widely varying temperatures and concentrations. The team arrived at their conclusions by incorporating a variety of thermodiffusion effect equations into numerical models, and subsequently calculating the resulting degrees of vapour absorption in the films.

Since a third of our total energy consumption is currently in industrial processes, heat exchange devices are becoming more and more important to increasing their efficiency by recycling large amounts of heat. The work, therefore, offers valuable new insights into how the performance of falling film absorbers could be improved in the future.

###

Reference

P. Fernandez de Arroiabe, A. Martinez-Urrutia, X Peña, M. Martinez-Agirre, M. M. Bou-Ali (2019), On the thermodiffusion effect in vertical plate heat exchangers, Eur. Phys. J. E 42:85. DOI 10.1140/epje/i2019-11850-7

Media Contact
Sabine Lehr
[email protected]
http://dx.doi.org/10.1140/epje/i2019-11850-7

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet7Share2ShareShareShare1

Related Posts

Chung-Ang University Researchers Innovate Interlayer Material to Enhance Lithium-Sulfur Battery Performance

Chung-Ang University Researchers Innovate Interlayer Material to Enhance Lithium-Sulfur Battery Performance

November 6, 2025
blank

Scientists Discover Temperature’s Key Role in RhRu₃Ox Performance During Acidic Water Oxidation

November 6, 2025

Breakthrough Hyperspectral Camera Captures First Precise Altitude Map of Blue Aurora

November 6, 2025

Michigan Startup Innovates Clothing Labels to Enhance Recycling and Brand Authentication

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1300 shares
    Share 519 Tweet 325
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Chronic Disease Burdens NICU Families: Outcomes, Impact

AI Transformer Enhances Clinical Respiratory Disease Analysis

CABI Scientists Propose Accidentally Introduced Parasitoid as Potential Savior Against Box Tree Ecological Extinction

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.