• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientists discover a novel perception mechanism regulating important plant processes

Bioengineer by Bioengineer
July 11, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

An international research team has revealed a novel mechanism for the perception of endogenous peptides by a plant receptor. The discovery of this activation mechanism sets a new paradigm for how plants react to internal and external cues. The study ‘Mechanisms of RALF peptide perception by a heterotypic receptor complex’ was published today in the journal Nature.

Similar to insulin in humans, plants also produce peptide hormones that orchestrate internal processes and responses, including growth, development, and immunity. One of them is RALF23, which belongs to the large family of RALF plant peptides. Notably, the study revealed a novel recognition mechanism for the RALF23 peptide signals by plant receptors. Since RALF peptides play major roles in multiple important plant processes, these findings will impact our understanding of how several additional important receptors control fundamental plant processes.

Previous work by the group of Professor Dr Cyril Zipfel at The Sainsbury Laboratory (Norwich, UK) and now at the University of Zürich (Zürich, Switzerland) had identified that RALF23 regulates plant innate immunity. Using a combination of genetics, biochemistry and structural biology, a close collaboration between this group and the group of Professor Dr Jijie Chai at the Innovation Center for Structural Biology and the Joint Center for Life Sciences of Tsinghua and Peking Universities (Beijing, China) and at the University of Cologne (Cologne, Germany) has now identified the molecular basis for RALF23 perception. This work further involved collaborators from the Gregor Mendel Institute (Vienna, Austria).

Professor Jijie Chai said: ‘We were excited about the results, when we saw that RALF23 needs two distinct types of proteins – a receptor kinase (FERONIA) and an unrelated membrane-associated protein – to be recognized. The way these three proteins form an impressive perception complex might apply to other plant receptors that recognize peptide hormones.’

Professor Cyril Zipfel added: ‘FERONIA is a plant receptor that was actually identified at the University of Zürich over a decade ago by my colleague Professor Ueli Grossniklaus for its important role in reproduction, but has since been shown to play key roles in multiple plant processes. Now that we understand the molecular basis of how FERONIA can perceive RALF peptides, it will help characterize how this unique receptor controls several aspects of plants’ life.’

###

This study was funded by the National Natural Science Foundation of China, the Ministry of Science and Technology, the Tsinghua-Peking Joint Center for Life Sciences, the Advanced Innovation Center of Structural Biology in Beijing, the European Research Council, the Gatsby Charitable Foundation, and the University of Zürich.

Jijie Chai is Alexander von Humboldt Professor at the University of Cologne. At the University and at the Max Planck Institute for Plant Breeding Research in Cologne, he conducts research on the structure of proteins and receptors that are important for the immune defence of living organisms. Whether in humans, mice or grains, proteins are very similar across animal and plant cells. Understanding these proteins is a key to influencing their immune defence. By exploring the complex structures of proteins, Chai provides important fundamental research for the fight against plant diseases and the development of new drugs, for example in the treatment of inflammatory diseases.

Publication:
Yu Xiao, Martin Stegmann, Zhifu Han, Thomas A. DeFalco, Katarzyna Parys, Li Xu, Youssef Belkhadir, Cyril Zipfel and Jijie Chai, ‘Mechanisms of RALF peptide perception by a heterotypic receptor complex,’ Nature, 10 July 2019. https://doi.org/10.1038/s41586-019-1409-7

Media Contact
Jijie Chai
[email protected]
http://dx.doi.org/10.1038/s41586-019-1409-7

Tags: BiologyCell BiologyPlant Sciences
Share12Tweet7Share2ShareShareShare1

Related Posts

Identifying Heat-Tolerant White Fulani Cows Using TOPSIS

Identifying Heat-Tolerant White Fulani Cows Using TOPSIS

November 5, 2025
blank

Sex-Based Cognitive Responses to PM2.5 Risk

November 5, 2025

Scientists Finalize Initial Drafts of Developing Mammalian Brain Cell Atlases

November 5, 2025

SPARTA: An Innovative Approach to Quantifying Evolutionary Uncertainty

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mount Sinai Health System Set to Deploy Microsoft Dragon Copilot

Common Heartburn and Blood Pressure Medications Associated with Poorer Breast Cancer Prognosis in Extensive Global Study

Pediatric Spinal Cord Injury: Trends & 2045 Forecast

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.