• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Discovered: A new way to measure the stability of next-generation magnetic fusion devices

Bioengineer by Bioengineer
July 10, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Elle Starkman/PPPL Office of Communications

Scientists seeking to bring to Earth the fusion that powers the sun and stars must control the hot, charged plasma — the state of matter composed of free-floating electrons and atomic nuclei, or ions — that fuels fusion reactions. For scientists who confine the plasma in magnetic fields, a key task calls for mapping the shape of the fields, a process known as measuring the equilibrium, or stability, of the plasma. At the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), researchers have proposed a new measurement technique to avoid problems expected when mapping the fields on large and powerful future tokamaks, or magnetic fusion devices, that house the reactions.

Neutron bombardments

Such tokamaks, including ITER, the large international experiment under construction in France, will produce neutron bombardments that could damage the interior diagnostics now used to map the fields in current facilities. PPPL is therefore proposing use of an alternative diagnostic system that could operate in high-neutron environments.

The system, a type of plasma diagnostic called “Electron Cyclotron Emission (ECE),” measures the temperature of the electrons cycling around the field lines. “By using an ECE system, we can learn about the plasma temperature and about fluctuations in the plasma,” said Andrew “Oak” Nelson, a graduate student in plasma physics at PPPL and first author of a Plasma Physics and Controlled Fusion paper that reports the research. “This proposed method could be developed into a stand-alone mapping tool or used with existing tools.”

The method combines ECE data with a fast-camera image used to measure the boundary of the plasma. The combination provides “diagnostics which can be robustly designed in high-neutron environments,” according to the paper. The process works as follows:

  • Researchers observe the radiation that the cycling electrons emit;
  • The radiation provides data about the temperature and modes, or instabilities, that grow in the plasma;
  • The data allow measurement of the “q-profile” — the helicity, or spiraling, of the magnetic field;
  • Measurement of the helicity enables tokamak operators to map and control the equilibrium of the plasma.

Reversing a process

This technique, which researchers tested on a simulated discharge of the National Spherical Torus Experiment (NSTX) at PPPL prior to its upgrade, reverses a process normally used in fusion research. “People usually get the q-profile from the equilibrium,” said Nelson, “but our paper shows that that you can also get the equilibrium from knowing the q-profile.”

Working closely with Nelson was his advisor, PPPL physicist Egemen Kolemen, an assistant professor at Princeton University’s Department of Mechanical and Aerospace Engineering. “Oak is an extremely talented student,” Kolemen said. “The method he developed allows construction of the state of the fusion plasma using only a single diagnostic, ECE. This will be useful for many tokamaks including ITER, because combining many different diagnostics is problematic and error prone.”

Researchers now plan to test the ECE technique on a wide variety of plasma discharges. A proven and fully developed technique could provide a valuable system for mapping the crucial magnetic fields in ITER and next-generation tokamaks.

###

Support for this work comes from the DOE Office of Science. Coauthors of the paper include Max Austin of the University of Texas at Austin.

PPPL, on Princeton University’s Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy’s Office of Science, which is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit energy.gov/science.

Media Contact
John Greenwald
[email protected]

Original Source

https://www.pppl.gov/news/2019/07/discovered-new-way-measure-stability-next-generation-magnetic-fusion-devices

Related Journal Article

http://dx.doi.org/10.1088/1361-6587/ab24a4

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)Research/Development
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.