• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

How a popular antidepressant drug could rewire the brain

Bioengineer by Bioengineer
July 10, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Prozac®, the trade name for the drug fluoxetine, was introduced to the U.S. market for the treatment of depression in 1988. Thirty years later, scientists still don’t know exactly how the medication exerts its mood-lifting effects. Now, researchers report that, in addition to the drug’s known action on serotonin receptors, fluoxetine could rearrange nerve fibers in the hippocampus of mouse brains. They report their results in ACS Chemical Neuroscience.

Fluoxetine was the first drug in the class of compounds known as selective serotonin reuptake inhibitors (SSRIs) to be approved by the U.S. Food and Drug Administration. SSRIs are thought to work primarily by increasing the amount of the neurotransmitter serotonin that is available for signaling between neurons, but researchers suspected that other processes could be going on. In past studies, Massimo Pasqualetti and colleagues showed that genetic depletion and restoration of serotonin in mice could rearrange hippocampal nerve fibers. Now, they wanted to see if the more subtle changes in serotonin availability caused by fluoxetine treatment could have the same effect.

To find out, the team used a mouse model that expresses green fluorescent protein (GFP) in the neurons that make serotonin in the brain. They gave these mice fluoxetine in their drinking water for 28 days and then compared the GFP signals in their brains with those of control mice that were not given the drug. The mice taking fluoxetine had serotonin-producing nerve fibers that were fewer in number and smaller in diameter than those of control mice, but only in the hippocampus. Although the consequences of this structural rearrangement are currently unknown, it could contribute to how antidepressants exert their therapeutic effect, the researchers say.

###

The authors acknowledge funding from the Italian Ministry of Education, University and Research, Toscana Life Sciences Foundation, the University of Pisa and Santa Lucia IRCCS Foundation.

For more research news, journalists and public information officers are encouraged to apply for complimentary press registration for the ACS fall 2019 national meeting in San Diego.

The American Chemical Society, the world’s largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Follow us on Twitter | Facebook

Media Contact
Katie Cottingham
[email protected]
http://dx.doi.org/10.1021/acschemneuro.8b00655

Tags: Chemistry/Physics/Materials SciencesDepression/AngerMental HealthneurobiologyNeurochemistryPharmaceutical ChemistryPharmaceutical SciencePharmaceutical SciencesPharmaceutical/Combinatorial Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

How Behavior Patterns Predict Teen Substance Use

How Behavior Patterns Predict Teen Substance Use

August 7, 2025
NADMED Named Tier 4 Sponsor for ARDD 2025

NADMED Named Tier 4 Sponsor for ARDD 2025

August 7, 2025

Youth and OTC CBD Use: Spain’s Current Landscape

August 7, 2025

Inhibiting Osteoclastogenesis: Egg Yolk Hydrolysate Shows Promising Effects

August 7, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    76 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    48 shares
    Share 19 Tweet 12
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Genetic Traits of Enterocytozoon bieneusi in Hebei Cattle

LiNiO2 Nanosheets: A New Cathode for Lithium-Ion Batteries

How Behavior Patterns Predict Teen Substance Use

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.