• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, December 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Characterizing the ‘arrow of time’ in open quantum systems

Bioengineer by Bioengineer
July 9, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Even in the strange world of open quantum systems, the arrow of time points steadily forward — most of the time. New experiments conducted at Washington University in St. Louis compare the forward and reverse trajectories of superconducting circuits called qubits, and find that they follow the second law of thermodynamics. The research is published July 9 in the journal Physical Review Letters.

“When you look at a quantum system, the act of measuring usually changes the way it behaves,” said Kater Murch, associate professor of physics in Arts & Sciences. “Imagine shining light on a small particle. The photons end up pushing it around and there is a dynamic associated with the measurement process alone.

“We wanted to find out if these dynamics have anything to do with the arrow of time — the fact that entropy tends to increase as time goes on.”

In a related video, Murch asks, “Do quantum movies look funny when you play them backwards?” He and his team, including Patrick Harrington, a graduate student in physics and first author of the paper, took that question to the lab — where their work is part of the new Center for Quantum Sensors.

“We looked at microscopic movies of a quantum system’s movement during measurement, and asked if the movies looked more likely when played forward or backwards; this comparison can be used to determine if entropy increases or not,” Murch said. “We found that even at the microscopic scale, the second law seems to hold: entropy generally increases.

“This increase happens because we look at it — the process of making the movie seemingly creates the arrow of time,” he said.

Murch’s research group is focused on understanding and controlling open quantum systems. While everyday objects obey the laws of classical mechanics, single particles of light or matter follow instead the laws of quantum physics. But these particles are not easily isolated, and as soon as they interact with the outside world they lose their quantum properties.

Murch is the 2018 recipient of a Cottrell Scholar Award and a National Science Foundation CAREER Award. The new research work featured in this video and publication is funded in part by his 2015 Alfred P. Sloan Research Fellowship.

###

Media Contact
Talia Ogliore
[email protected]

Related Journal Article

https://source.wustl.edu/2019/07/characterizing-the-arrow-of-time-in-open-quantum-systems/
http://dx.doi.org/10.1103/PhysRevLett.123.020502

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

December 19, 2025
Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

December 11, 2025

Photoswitchable Olefins Enable Controlled Polymerization

December 11, 2025

Cation Hydration Entropy Controls Chloride Ion Diffusion

December 10, 2025
Please login to join discussion

POPULAR NEWS

  • Robotic Waist Tether for Research Into Metabolic Cost of Walking

    NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Novel POLR1D Mutation Linked to Treacher Collins Syndrome

FADS2 and ALDOC: Key Obesity Biomarkers Revealed

How Sarcopenia Affects Elderly Balance: Force Platform Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.