• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Charge transfer within transition-metal dyes analysed

Bioengineer by Bioengineer
July 9, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: M. Künsting/HZB

For the first time, a team there has investigated the fundamental photochemical processes around the metal atom and its ligands. The study has now been published in “Angewandte Chemie, International Edition” and is displayed on the cover.

Organic solar cells such as Grätzel cells consist of dyes that are based on compounds of transition-metal complexes. Sunlight excites the outer electrons of the complex in such a way that they are transported from orbitals at the centre of the metallic complex into orbitals of adjacent compounds. Until now, it was assumed that charge carriers were spatially separated in this process and then stripped off so that an electric current could flow. A team headed by Alexander Föhlisch at HZB has now been able to clarify that this is not the case.

Using the short X-ray pulses of BESSY II in low-alpha mode, they were able to follow each step of the process in an iron complex triggered by photo-excitation with a laser pulse. “We can directly observe how the laser pulse depopulates the 3d orbitals of the metal”, explains Raphael Jay, PhD student and first author of the study. With the help of theoretical calculations, they were able to interpret the measurement data from time-resolved X-ray absorption spectroscopy very accurately. The following picture emerges: Initially, the laser pulse indeed causes electrons from the 3d orbital of the iron atom to be delocalised onto the adjacent ligands. However, these ligands in turn immediately push electronic charge back into the direction of the metal atom, thereby immediately compensating for the loss of charge at the metal and the associated initial charge carrier separation.

These findings might contribute to the development of new materials for dye-sensitized solar cells. For until now, ruthenium complexes have routinely been used in organic solar cells. Ruthenium is a rare element and therefore expensive. Iron complexes would be significantly cheaper, but are characterised by high recombination rates between charge carriers. Further studies will reveal what the mediating features in transition-metal complexes are in order for light to be efficiently converted into electrical energy.

###

Media Contact
Alexander Föhlisch
[email protected]

Original Source

http://www.helmholtz-berlin.de/pubbin/news_seite?nid=20614;sprache=en;seitenid=982

Related Journal Article

http://dx.doi.org/10.1002/anie.201904761

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet7Share2ShareShareShare1

Related Posts

Scientists Identify Unique Brain Signaling Differentiating Parkinson’s Disease from Essential Tremor

Scientists Identify Unique Brain Signaling Differentiating Parkinson’s Disease from Essential Tremor

September 2, 2025
Creating Something from Nothing: Physicists Simulate Vacuum Tunneling in a Two-Dimensional Superfluid

Creating Something from Nothing: Physicists Simulate Vacuum Tunneling in a Two-Dimensional Superfluid

September 1, 2025

Chain Recognition Advances Head–Tail Carboboration of Alkenes

September 1, 2025

Solar Orbiter Tracks Ultrafast Electrons Back to the Sun

September 1, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

How CAX1’s N-Terminus Controls Its Activity

Tumor Depth Predicts Cervical Cancer Risk

Defective Neutrophil Exosomes Trigger Macrophage Activation

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.