• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, January 29, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

How mammary glands appeared in the course of evolution

Bioengineer by Bioengineer
November 15, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A joint team of geneticists from the University of Geneva (UNIGE) and the Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland, demonstrated that the emergence of mammary glands in placental mammals and marsupials results from recycling certain 'architect' genes. The latter, known as Hox genes, are responsible for coordinating the formation of the organs and limbs during the embryonic stage. Such genes are controlled by complex regulatory networks. In the course of evolution, parts of these networks were reused to produce different functions. Architect genes were thus requisitioned to form the mammary bud and, later, for gestation. This team's work has been published in the journal PNAS.

An ubiquitous regulatory module

The group led by Denis Duboule, a geneticist at UNIGE and EPFL, is interested in the mechanisms involved in the appearance of mammary glands. As the professor notes, 'We observed that certain architect genes are at work during the development of the mammary bud in mice, and we wanted to understand how and why'.

The research team had previously identified a section of DNA adjacent to the HoxD gene cluster, which formed a particular 3D structure in order to interact with and activate certain Hox genes. 'We established that this particular DNA sequence adopts the same three-dimensional structure in tissues as diverse as those destined to become arms, intestines or mammary glands', says Leonardo Beccari, a member of the Geneva team and the project leader.

This does not concern the platypus

The three-dimensional conformation of this DNA is identical to that of other organs but we still had to understand what characterised the regulatory mechanism for the Hox genes in the mammary bud, which appeared later in the evolutionary cycle. 'We discovered the existence of a short DNA sequence capable of activating a specific Hox gene, and which is present only in placental mammals and marsupials', explains Ruben Schep, the first author of the article. Indeed, mammals that lay eggs, such as the platypus, do not have this sequence.

This short DNA sequence, called MBRE, was only able to carry out its function because it appeared in a region of this three-dimensional DNA where there was already a contact with genes from the HoxD group. Control of these genes' expression in the mammary bud has thus evolved thanks to the hijacking of this pre-existing regulatory module, thereby explaining the later arrival of such a structure, and thus of the placental mammals and the marsupials .

###

Media Contact

Denis Duboule
[email protected]
41-223-796-771
@UNIGEnews

http://www.unige.ch

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

New Scale Assesses Critical Care Competency in Nurses

January 29, 2026
Enhancing Maize Yield Prediction in Uganda with CNN-LSTM

Enhancing Maize Yield Prediction in Uganda with CNN-LSTM

January 29, 2026

Child Burn Care Outcomes Outside Specialized Centers

January 29, 2026

Two Decades of Paediatric Lymphoblastic Lymphoma Insights

January 29, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    157 shares
    Share 63 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    149 shares
    Share 60 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    80 shares
    Share 32 Tweet 20
  • Digital Privacy: Health Data Control in Incarceration

    62 shares
    Share 25 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Scale Assesses Critical Care Competency in Nurses

Enhancing Maize Yield Prediction in Uganda with CNN-LSTM

Child Burn Care Outcomes Outside Specialized Centers

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 72 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.