• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Research reveals how succinate dehydrogenase is linked to both tumor and neurodegeneration

Bioengineer by Bioengineer
November 15, 2016
in Science News
Reading Time: 1 min read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Prof. Sarah Fendt (VIB-KU Leuven): "In this project we have studied mutations in the enzyme succinate dehydrogenase, which are associated with tumors, but also neurodegeneration. This is per se already interesting, because tumors are defined by cells that show sustained proliferation and in this sense sustained fitness, while neurodegeration is defined by cells of impaired fitness. Thus, it is surprising that mutations in one and the same enzyme, which all lead to loss of enzyme expression result in two very distinct disease phenotypes."

Dr. Doriane Lorendeau (VIB-KU Leuven): "We now found that in succinate dehydrogenase mutations that lead to tumors an additional loss of complex I of the respiratory chain occurs and that the metabolic phenotype that is described for tumors with succinate dehydrogenase mutation requires the dual loss succinate dehydrogenase and complex I. In line, neurodegeneration defined by succinate dehydrogenase mutations does not lead to loss of complex I and thus results in a metabolically different phenotype, which can explain the impaired cellular fitness."

###

Note

Doriane is funded by a VIB-Omics fellowship

Media Contact

Sooike Stoops
[email protected]
32-924-46611
@VIBLifeSciences

http://www.vib.be

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Dipeptide’s Impact on Ionic Liquid Micellization Explored

Dipeptide’s Impact on Ionic Liquid Micellization Explored

October 27, 2025
Fluid Strategies in Preterm Infants with PDA

Fluid Strategies in Preterm Infants with PDA

October 27, 2025

Unlocking Henna’s Healing Power: A Breakthrough Chemical from Lawsonia inermis Fights Fibrosis

October 27, 2025

ACHO: Enhancing Treatment Adherence through Digital Care

October 27, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1285 shares
    Share 513 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    196 shares
    Share 78 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    134 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Dipeptide’s Impact on Ionic Liquid Micellization Explored

Fluid Strategies in Preterm Infants with PDA

Unlocking Henna’s Healing Power: A Breakthrough Chemical from Lawsonia inermis Fights Fibrosis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.