• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, December 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Unearthing the sweet potato proteome

Bioengineer by Bioengineer
June 19, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The sweet, starchy orange sweet potatoes are tasty and nutritious ingredients for fries, casseroles and pies. Although humans have been cultivating sweet potatoes for thousands of years, scientists still don’t know much about the protein makeup of these tubers. In ACS’ Journal of Proteome Research, researchers have analyzed the proteome of sweet potato leaves and roots, and in the process, have revealed new insights into the plant’s genome.

The sweet potato (Ipomoea batatas, Lam.) is a staple food in some parts of the world, in addition to being used for animal feed and industrial products, such as biofuels. The plant has a surprisingly complex genome, encoding more predicted genes than the human genome. Sweet potato also has a complex chemical composition, with a low protein content in the roots (the part that people eat) and many secondary metabolites in the leaves, making it difficult to extract sufficient quantities of proteins for analysis. Sorina and George Popescu and colleagues wanted to see whether a “proteogenomics” approach — analyzing both protein and genetic data together — could help them gain a better understanding of the compositions of sweet potato roots and leaves.

The team extracted proteins from root and leaf samples using two different methods and cut them into peptides, which they analyzed with liquid chromatography and mass spectrometry. The researchers identified 3,143 unique proteins from sweet potato leaves and 2,928 from roots. When they compared the proteomic data with the genome of the sweet potato, they identified some regions in the published genome sequence where their data could provide enhanced information. For example, the analysis predicted 741 new protein-coding regions that previously were not thought to be genes. The group says the results could be used to help further characterize and biofortify the tuber.

###

The authors acknowledge funding from the USDA-National Institute of Food and Agriculture, the Mississippi Agricultural & Forestry Experiment Station and the USDA-Agricultural Research Service.

The abstract that accompanies this study is available here.

The American Chemical Society, the world’s largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Follow us on Twitter | Facebook

Media Contact
Katie Cottingham
[email protected]

Tags: BiodiversityBioinformaticsChemistry/Physics/Materials SciencesFood/Food ScienceGenesPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Streptococcus Protein Triggers PBP1a for Cell Division

Streptococcus Protein Triggers PBP1a for Cell Division

December 19, 2025
blank

Redefining Sex in Science: Three Rigid Frameworks

December 19, 2025

Pneumococcal S Protein Drives Cell Wall Defense

December 19, 2025

RNA-Seq Unveils Gene Expression Differences in Pea Subspp.

December 19, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Bridging Fundamental Research and Applications in Lithium CO2 Batteries

Rhno1 Deletion Impairs DNA Damage Response in Mice

Recombination Junctions Reveal Immune and DNA Repair Defects

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.