• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

RNR ‘switch’ offers hope in battling antibiotic resistant bacteria

Bioengineer by Bioengineer
June 17, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

ITHACA, N.Y. – New research from Cornell University offers a new pathway for targeting pathogens in the fight against antibiotic resistant bacteria.

As antibiotic resistance rises, the search for new antibiotic strategies has become imperative. Researchers used the Cornell High Energy Synchotron Source (CHESS) to reveal an unexpected mechanism of activation and inactivation in the protein ribonucleotide reductase (RNR).

The findings were published in “Convergent Allostery in Ribonucleotide Reductase” in Nature Communications.

Understanding the “switch” that can turn RNR off provides a possible means to shut off the reproduction of harmful bacteria.

RNRs take ribonucleotides, the building blocks of RNA, and convert them to deoxyribonucleotides, the building blocks of DNA. In all organisms, the regulation of RNRs involves complex mechanisms. Without these mechanisms, DNA replication becomes error-prone, and dangerous mutations could occur.

“Without the RNR enzyme, DNA-based life as we know it could not exist,” said first author William Thomas, a graduate student in chemistry and chemical biology. “If we understand the RNR ‘off switch’ well enough, we can take advantage of it by developing our own ways to toggle it with new antibiotic drug molecules.”

This research reveals evolution in action, according to Nozomi Ando, assistant professor of chemistry and the paper’s senior author. The lack of the normal regulatory “switch” mechanism may provide an evolutionary advantage for the bacteria they studied.

“Usually the increased chance of mutations is a problem for bacteria, but maybe under certain circumstances it’s actually advantageous for an organism to mutate and possibly become resistant to an antibiotic or another stressful situation,” she said.

RNRs are not easy proteins to work with or understand, and the researchers said characterizing them in the traditional way has been challenging.

“The combination of small-angle X-ray scattering using CHESS, crystallography, and cryo-electron microscopy is what made this study possible,” Ando said.

###

Co-authors include Cornell doctoral student Audrey Burnim; research associate John-Paul Bacik; F. Phil Brooks III of Princeton University; JoAnne Stubbe of the Massachusetts Institute of Technology; Jason T. Kaelber of Rutgers University; and James Z. Chen of Oregon Health and Science University.

The research was supported by the National Science Foundation and the National Institute of Health.

For more information, see this Cornell Chronicle story.

Cornell University has dedicated television and audio studios available for media interviews supporting full HD, ISDN and web-based platforms.

Media Contact
Gillian Smith
[email protected]

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

August 26, 2025
SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

August 26, 2025

Expanding Azole Chemistry with Precise N-Alkylation

August 26, 2025

Advancing Green Technology with More Efficient and Reliable SiC Devices

August 26, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Disc Degeneration on Lumbar Spine Mechanics

Expanding Pancreas Transplants: Benefits and Boundaries

Enhancing Biomechanics Learning with Prediction Problem-Based Method

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.