• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientists unearth green treasure — albeit rusty — in the soil

Bioengineer by Bioengineer
June 17, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

ITHACA, N.Y. – Cornell University engineers have taken a step in understanding how iron in the soil may unlock naturally occurring phosphorus bound in organic matter, which can be used in fertilizer, so that one day farmers may be able to reduce the amount of artificial fertilizers applied to fields.

“This component of the phosphorus cycling process has been largely neglected,” said senior author Ludmilla Aristilde, associate professor in biological and environmental engineering, “but now we’re figuring out phosphorus recycling mechanisms by soil minerals that could benefit the environment.”

“Phosphorus is a finite resource, but in agriculture we often apply it – and over-apply it – together with nitrogen on crops to amend soil health and boost crop growth,” said co-author Annaleise Klein, a postdoctoral researcher in Aristilde’s lab. “If we could understand the molecular mechanisms of these natural processes in the soil, and how those processes may be used by plants and bacteria, we can help the environment and thwart runoff from farms into streams and lakes – and possibly prevent algae blooms in nearby waters.”

For farmers growing crops, phosphate fertilizer – derived from mining inorganic phosphate rock – is a dwindling resource. Once depleted, it is gone.

“The big picture is that phosphorus is a limited nutrient in the environment,” said Klein. “Instead of mining rock phosphate for a farmer’s fields – or a homeowner’s lawn – now we can exploit the natural soil mechanism of phosphate release from organics and decrease our reliance on mined phosphorus.”

Said Aristilde: “We are unraveling phosphorus cycling pathways that we didn’t know about before. We don’t want to keep adding more phosphorus. … The less we mess with nature, the better.”

###

The research, “Abiotic Phosphorus Recycling From Adsorbed Ribonucleotides on a Ferrihydrite-type Mineral: Probing Solution and Surface Species,” published online early for the July 1 issue of the Journal of Colloid and Interface Science.

The National Institute of Food and Agriculture, and the U.S. Department of Energy supported the research.

Cornell University has dedicated television and audio studios available for media interviews supporting full HD, ISDN and web-based platforms.

Media Contact
Lindsey Hadlock
[email protected]

Related Journal Article

http://news.cornell.edu/stories/2019/06/scientists-unearth-green-treasure-albeit-rusty-soil
http://dx.doi.org/10.1016/j.jcis.2019.03.086

Tags: AgricultureBiomedical/Environmental/Chemical EngineeringFertilizers/Pest Management
Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.