• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Binary solvent mixture boosting high efficiency of polymer solar cells

Bioengineer by Bioengineer
June 12, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press

Tremendous progress of organic solar cells (OSCs) has been exemplified by the use of non-fullerene electron acceptors (NFAs) in the past few years. Compared with fullerene derivative acceptors, NFAs show a multitude of advantages including tunable energy levels, broad absorption spectrum and strong light absorption ability, as well as high carrier mobility.
To further improve the efficiency of non-fullerene OSCs, fluorine (F) or chlorine (Cl) atoms have been introduced into the chemical structure of NFAs as an effective approach to modulate the HOMO and LUMO levels. With a small Van der Waals radius and large electronegativity, the F atom improves the molecular planarity and aggregation tendency of NFAs, as well as increasing their crystallization ability.

However, the tendency of fluorinated NFAs to self-organize into crystals usually leads to excessive phase separation, which has been found to increase the film surface roughness to enlarge charge recombination at the electrode interface, and more importantly to reduce the bulk heterojunction interfaces within the photoactive layer; effects that all lead to reduced power efficiency.

Very recently, Professor Tao Wang’s group in Wuhan University of Technology demonstrated an effective approach to tune the molecular organization of a fluorinated NFA (INPIC-4F), and its phase separation with the donor PBDB-T, by varying the casting solvent (CB, CF and their mixtures). When a high boiling-point solvent CB was employed as the casting solvent, INPIC-4F formed lamellar crystals which further grow into micron-scale spherulites, resulting in a low PCE of 8.1% only. When the low boiling-point solvent CF was used, the crystallization of INPIC-4F has been suppressed and the low structure order leads to a moderate PCE of 11.4%. By using binary solvent mixture (CB:CF=1.5:1, v/v), the efficiency of PBDB-T:INPIC-4F non-fullerene OSCs was improved to 13.1%. These results show great promise of binary solvent strategy to control the molecular order and nanoscale morphology for high efficiency non-fullerene solar cells.

###

This work was supported by the Natural Science Foundation of Hubei Province (Grant No. 2018CFA055), the National Natural Science Foundation of China (Grants No. 21774097, 21504065, 51573077 and 21875111).

See the article:

Chen M, Zhang Z, Li W, Cai J, Yu J, Spooner E, Kilbride R, Li D, Du B, Gurney R, Liu D, Tang W, Wang T. Regulating the morphology of fluorinated non-fullerene acceptor and polymer donor via binary solvent mixture for high efficiency polymer solar cells. Sci. China Chem. 2019, doi: 10.1007/s11426-019-9484-8.

Media Contact
Wang Tao
[email protected]

Related Journal Article

http://dx.doi.org/10.1007/s11426-019-9484-8

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

JUNO Successfully Completes Liquid Filling and Commences Data Acquisition

JUNO Successfully Completes Liquid Filling and Commences Data Acquisition

August 26, 2025
Durable and Flexible Porous Crystals Showcase Exceptional Gas Sorption Capabilities

Durable and Flexible Porous Crystals Showcase Exceptional Gas Sorption Capabilities

August 25, 2025

Rice’s Martí, Sarlah, and Wang Receive National American Chemical Society Honors

August 25, 2025

Molecular Compound Enables Photoinduced Double Charge Accumulation

August 25, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    146 shares
    Share 58 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Novel Stress-Release Technique Enables Flexible Al2O3 OLED Films

Engineering Anisotropic Structures in Living Tissues

Tackling Public Health Challenges in Local Governance: Norway’s Experience

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.