• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New genes out of nothing

Bioengineer by Bioengineer
June 4, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

One key question in evolutionary biology is how novel genes arise and develop. Swedish researchers now show how new genes and functions that are advantageous to bacteria can be selected from random DNA sequences. The results are presented in the scientific journal mBio.

How do new genes and functional proteins arise and develop? This is one of the most fundamental issues in evolutionary biology. Two different types of mechanism have been proposed: (1) new genes with novel functions arise from existing genes, and (2) new genes and proteins evolve from random DNA sequences with no similarity to existing genes and proteins. In the present study, the researchers explored the latter type of mechanism: evolution of new genes and proteins from randomised DNA sequences – de novo evolution, as it is called. It is fairly easy to understand that when a gene already exists, it can be modified and acquire a new function. But how does “nothing” turn into a function affording a small advantage that is favoured by natural selection?

The raw material for the experiment was an big library of some 500 million randomised gene sequences, from which peptide sequences with a biological function were identified. In the experiment, random gene sequences were placed on a plasmid and overexpressed. The scientists then investigated whether they could give bacteria a specific, defined property. Were they, for example, able to give the bacteria antibiotic resistance? They identified several short peptides (22-25 amino acids long) that could give the bacteria a high degree of resistance to aminoglycosides, an important class of antibiotics used for severe infections.

“When the project started, we had low expectations. We were amazed when we found peptides able to confer a resistance level 48 times higher,” says Dr Michael Knopp, the study’s lead author.

Through a combination of genetic and functional experiments, the scientists were able to demonstrate that the peptides cause resistance by attaching themselves to bacterial cell membranes and affecting the proton potential across the membrane. The disruption of the proton potential causes a decrease in antibiotic uptake, rendering the bacteria resistant.

“This study is important because it shows that completely random sequences of amino acids can give rise to new, advantageous functions, and that this process of de novo evolution can be studied experimentally in the laboratory,” says Dan I. Andersson, Professor of Medical Bacteriology, who is chiefly responsible for the study.

###

Media Contact
Dan Andersson
[email protected]

Related Journal Article

http://www.uu.se/en/news-media/press-releases/press-release/?id=4724&area=3,8&typ=pm&lang=en
http://dx.doi.org/10.1128/mBio.00837-19

Tags: BiologyGenesGenetics
Share13Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.