• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Towards a new era of small animal imaging research

Bioengineer by Bioengineer
May 30, 2019
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A collaborative study between McGill University and the University of Antwerp allows PET scanning on animals without the use of anesthesia.

Have you ever spent half an hour trying to take the best photo of your pets but they won’t stay still in the perfect angle? This is also true for small animal imaging research using positron emission tomography (PET). Because of this, the use of anesthesia is a widespread practice in animal imaging. It’s one of the biggest limitations to imaging studies because anesthesia alters the animal’s normal physiological state, blurring the answers to the questions that many researchers have been asking.

Thanks to a collaborative effort between McGill University, Montreal Canada and the University of Antwerp, Belgium this no longer needs to be the case. A new study, published in NeuroImage by researchers from the Molecular Imaging Center Antwerp (MICA) and the Douglas Mental Health University Institute of McGill University, describes a new PET imaging platform capable of simultaneously scanning multiple animals while they are awake.

The platform uses an insert developed by Min Su (Peter) Kang and Reda Bouhachi (Pedro Rosa-Neto’s Team, McGill University) and an algorithm developed by MICA researchers Alan Miranda and Professor Jeroen Verhaeghe, that tracks a single animal’s head movements. This collaborative effort enabled the Douglas researchers adapted the algorithm to track two animals’ movements simultaneously in a PET scanner, with the help of imaging experts from The Neuro (Montreal Neurological Institute and Hospital).

“We think our breakthrough will open a new era of small animal PET imaging research and unprecedented experimental designs that many researchers have been anxious to test for a long time,” says Pedro Rosa-Neto, Associate Professor in McGill’s departments of Neurology & Neurosurgery and Psychiatry and a researcher at McGill’s Translational Neuroimaging Laboratory.

Previous methods developed to avoid using anesthesia required external tracking or surgical implantation of devices to scan the brain of moving animals. The new method developed through this collaboration thus offers a less invasive means of conducting imaging studies and allow animals to interact in a “natural” manner during scans.

“From the start of this project our goal was to develop a practical approach to imaging awake animals. After more than 3 years of development, we delivered an approach that can be easily implemented so scientists can focus on new exciting biology questions that can be answered rather than on technical issues,” says Jeroen Verhaeghe, Professor at the Molecular Imaging Center Antwerp (MICA), part of the University of Antwerp and the University Hospital Antwerp.

Thanks to this innovative platform, TNL and MICA will continue their collaboration in the hopes to answer questions that have long eluded scientists, for example, the extent to which brain cells use glucose as the main energy source. The new scanning method could also help understand the neurochemical basis of sympathy, fear, learning and memory in real time in awake animals, questions that could not previously be answered because of the use of anesthesia.

###

To a video of the scanning procedure: https://www.youtube.com/watch?v=oncBRBnqRQQ

For more information on the study: https://www.sciencedirect.com/science/article/pii/S1053811919301600

Media Contact
Cynthia Lee
[email protected]
https://www.mcgill.ca/newsroom/channels/news/towards-new-era-small-animal-imaging-research-297501

Tags: Biologyneurobiology
Share13Tweet8Share2ShareShareShare2

Related Posts

Whole Exome Sequencing Links FANCM to ER-Negative Breast Cancer

Whole Exome Sequencing Links FANCM to ER-Negative Breast Cancer

August 21, 2025
blank

Adipocyte IL6 and Cancer CXCL1 Drive STAT3/NF-κB Crosstalk

August 21, 2025

Key Traits That Predict Disease Emergence in New Populations

August 21, 2025

STN1 Drives Pancreatic Cancer Metastasis via ZEB1

August 21, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

How Cells Manage Stress: New Study Uncovers the Role of Waste Disposal Systems in Overinflated Balloons

Whole Exome Sequencing Links FANCM to ER-Negative Breast Cancer

Adipocyte IL6 and Cancer CXCL1 Drive STAT3/NF-κB Crosstalk

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.