• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New mutations for herbicide resistance rarer than expected, study finds

Bioengineer by Bioengineer
May 28, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Photo courtesy Patrick Tranel

CHAMPAIGN, Ill. — After exposing more than 70 million grain amaranth seeds to a soil-based herbicide, researchers were not able to find a single herbicide-resistant mutant. Though preliminary, the findings suggest that the mutation rate in amaranth is very low, and that low-level herbicide application contributes little – if anything – to the onset of new mutations conferring resistance, researchers say.

The study is reported in the journal Weed Science.

Any major stress that does not kill a plant can contribute to genetic mutations in its seeds and pollen, said University of Illinois crop sciences professor Patrick Tranel, who led the new research. Even the ultraviolet light in sunlight can stress a plant and increase the likelihood of mutations in its offspring, he said. Such mutations increase genetic diversity, which can be useful to a species’ survival.

“Resistance to herbicides comes from genetic variation in a population,” Tranel said. “If an individual weed has the right mutation that allows it to survive a particular herbicide, that individual will survive and pass the trait to its progeny.”

The relative contribution of new mutations to the problem of herbicide resistance is poorly understood, Tranel said. He and his colleagues hoped to determine the baseline mutation rate for a plant of the genus Amaranthus, a group that includes waterhemp, Palmer amaranth and other problematic agricultural weeds. They also wanted to test whether herbicide applications that failed to kill the plant increased that baseline rate.

The researchers started with a single seed of Amaranthus hypochondriacus, which is closely related to several agricultural weeds but is not known to harbor herbicide-resistance genes. Using a greenhouse to isolate their experiments from potential contamination from other Amaranthus species, the team cultivated this one plant, collected its seeds and began the long process of growing generations of related plants and harvesting the seeds.

“A good plant would produce about 100,000 seeds,” Tranel said. “From this one plant, we eventually got more than 70 million seeds.”

Despite the laboratory’s isolation and the vigilance of the scientists, a few other Amaranthus weed seeds made their way into the experiment.

“These seeds are tiny and cling to things. You can have a seed stuck to your skin and not know it,” Tranel said. “One of the students found a weed seed in his eyebrow after he left the greenhouse.”

Luckily for the scientists, the seeds of the weedy Amaranthus species are black, while their test plants produced only light-colored seeds.

To screen the seeds for herbicide resistance, the researchers spread them over the surface of soil treated with a type of herbicide known as an ALS inhibitor, then waited to see whether any of the seedlings survived. Very few of the test plants overcame the herbicide treatment. Rigorous testing revealed that those rare plants that did survive were the offspring of seeds of weedy amaranth species that already carried the resistance genes.

The experiments verified that the scientists’ approach worked well for screening vast numbers of seeds. It also established that the team would have to test many more than 70 million seeds to determine the baseline mutation rate in A. hypochondriacus – and to figure out if low-level herbicide treatment increases that rate, Tranel said.

Knowing this is essential to developing models that can accurately predict how plants will behave in a field, he said.

“Herbicide resistance is an evolutionary process, and evolutionary processes are mathematical,” Tranel said. “If you know more precisely how plants will behave under different environmental conditions, you can develop equations that will predict how fast resistance will evolve.”

If, as the study suggests, the mutation rate is much lower than expected, it doesn’t mean that herbicide resistance will not occur, he said. “It may be that resistance happens a bit more slowly than previously thought,” he said. “But it will still occur.”

###

The U.S. Department of Agriculture National Institute of Food and Agriculture provided partial funding for this research. No conflicts of interest have been declared.

Editor’s notes:

To reach Patrick Tranel, call 217-333-1531; email [email protected].

The paper “Empirical investigation of mutation rate for herbicide resistance” is available online and from the U. of I. News Bureau.

Media Contact
Diana Yates
[email protected]

Original Source

https://news.illinois.edu/view/6367/791844

Related Journal Article

http://dx.doi.org/10.1017/wsc.2019.19

Tags: Agricultural Production/EconomicsAgricultureEvolutionFertilizers/Pest ManagementPlant Sciences
Share12Tweet7Share2ShareShareShare1

Related Posts

New analysis across the tree of life reveals most species evolved during bursts of rapid diversification

New analysis across the tree of life reveals most species evolved during bursts of rapid diversification

August 20, 2025
For Apes, What’s Out of Sight Stays on Their Mind

For Apes, What’s Out of Sight Stays on Their Mind

August 20, 2025

Soybean Phytocytokine-Receptor Module Boosts Disease Resistance

August 20, 2025

Breakthrough Study Reveals New Methods to Protect Nerve Cells from ALS

August 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Scientists Amazed by Enormous Bubble Surrounding Supergiant Star

Early Teen Sleep Issues Linked to Increased Risk of Future Self-Harm

New analysis across the tree of life reveals most species evolved during bursts of rapid diversification

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.