• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists found a way to increase the capacity of energy sources for portable electronics

Bioengineer by Bioengineer
May 28, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists from Skoltech, Moscow State University (MSU) and Moscow Institute of Physics and Technology (MIPT) have proposed a new approach to replacing carbon atoms with nitrogen atoms in the supercapacitor’s crystal lattice and developed a novel capacity enhancement method based on carbon lattice modification with the aid of plasma. Their findings can help create the next generation of power sources for portable electronics. The results of their study were published in Scientific Reports.

As portable devices evolve, the demand for new types of energy sources grows. Scientists keep looking for an effective way to improve the performances of electrochemical energy sources. A chemical source of current, the supercapacitor is distinguished by high charge and discharge rates and a higher energy storage capacity per unit mass or volume as compared to a battery. It is customary to use porous materials, such as carbon or porous metals, for supercapacitors, however metals make the source much heavier. There are several ways of increasing the capacity of electrochemical energy sources while keeping their weight unchanged, for example, by using other lighter elements or incorporating the atoms of another element into the crystal lattice (doping.) The second method is believed to offer better prospects, as it allows easy atom incorporation at the carbon structure synthesis stage. Nitrogen is one of the elements considered for doping. Nitrogen is involved in redox reactions, which leads to an additional increase in capacity. Although scientists have long been aware of the doping method, the effect of nitrogen on the electrochemical characteristics is still poorly understood.

A group of scientists led by Skoltech Senior Researcher Dr. Stanislav Evlashin demonstrated a simple way of increasing the supercapacitors’ electrochemical performance. Their approach provides a better insight into the nitrogen incorporation process. The researchers performed the experiments using Carbon Nanowalls made of vertically oriented graphene sheets, in which they replaced some of the carbon with nitrogen using carbon structure treatment by plasma. The outcomes of the study are an important step towards creating new energy sources.

“In this study, we used a plasma post-treatment approach in order to improve the capacity of the electrodes,” explains Dr. Evlashin. “We used carbon structures with a high specific surface area as a material for doping in the nitrogen plasma and replaced a part of carbon atoms with nitrogen atoms to enhance the electrochemical capacity of the energy source. This approach can be applied to modify any carbon structure. The obtained samples were tested using various methods. The experimental results displayed a six-fold increase in electrochemical capacity and excellent cycling stability. We also performed DFT simulation of the nitrogen incorporation process that sheds some light on the complex incorporation mechanisms.”

###

Media Contact
Alina Chernova
[email protected]

Related Journal Article

https://www.skoltech.ru/en/2019/05/scientists-find-a-way-to-increase-the-capacity-of-energy-sources-for-portable-electronics/
http://dx.doi.org/10.1038/s41598-019-43001-3

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)
Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.