• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Green-screen keying method cuts time, boosts quality in film compositing

Bioengineer by Bioengineer
November 14, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Filming an actor in front of a green screen and then superimposing the actor over another background is commonplace in feature film production, but getting rid of all traces of the green screen remains a chore. A new "keying" method devised by Disney Research and ETH Zurich, however, improves the results substantially.

What's more, these superior results can be achieved in about one-tenth the time it takes a professional compositor to perform this task manually.

"Keying is a crucial intermediate step in adding synthetic backgrounds and objects seamlessly into live-action shots," said Markus Gross, vice president at Disney Research. "It's also a major bottleneck in postproduction, so a keying method that is both fast and produces high-quality results will have a major impact on the production of feature films."

A report on the method, which is based on a novel algorithm that computes underlying colors and their mixing ratios, will be presented at the Association for Computing Machinery's (ACM) Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 2017) next summer in Los Angeles and has been published in the August issue of ACM Transactions on Graphics journal (ACM TOG).

A number of commercial software tools are available to help a compositing artist perform keying, said Tunç Aydin, research scientist at Disney Research. But those tools have difficulty discerning the green screen background from the foreground in regions of the image where the colors of objects mix with each other, he noted. This mixing can occur because of motion blur, intricate object boundaries, such as hair, or colors cast onto an object from the green screen itself. Whatever the cause, these imperfections usually force the artist to painstakingly paint those regions manually.

The research team opted to create a color unmixing algorithm, which can be used to extract multiple color layers using a color model of the image, said Yagiz Aksoy, a Ph.D. student at Disney Research and ETH Zurich. A subset of these colors is then combined to produce the final keying result.

The team created a user interface that enables the artist to create a color model of the image simply by scribbling over each distinct-colored area of the image. The shape of the scribble doesn't matter; the program simply needs to identify each area of color so it can create a representation of all the colors in the scene. The algorithm computes the underlying colors and their mixing ratios for each area.

The researchers showed that the method would be applicable for keying scenes with non-green-screen backgrounds. Also, the ability to represent the image with multiple color layers, rather than just foreground and background layers as in conventional methods, creates opportunities for new applications, Aydin said. Colors of objects in a scene, for instance, could be changed.

In comprehensive comparisons with commercial keying tools and with other published methods, the researchers showed that the results for their method were superior in quality as it required only one-tenth of the manual editing time it would take a professional artist to process the same content.

Combining creativity and innovation, this research continues Disney's rich legacy of inventing new ways to tell great stories and leveraging technology required to build the future of entertainment.

###

In addition to Aksoy and Aydin, the research team included Marc Pollefeys, professor of computer science at ETH Zurich, and Aljoša Smolic, a former senior research scientist at Disney Research, currently a professor at Trinity College in Dublin.

For more information and a video, visit the project web site at https://www.disneyresearch.com/publication/green-screen/.

About Disney Research

Disney Research is a network of research laboratories supporting The Walt Disney Company. Its purpose is to pursue scientific and technological innovation to advance the company's broad media and entertainment efforts. Vice Presidents Jessica Hodgins and Markus Gross manage Disney Research facilities in Los Angeles, Pittsburgh and Zürich, and work closely with the Pixar and ILM research groups in the San Francisco Bay Area. Research topics include computer graphics, animation, video processing, computer vision, robotics, wireless & mobile computing, human-computer interaction, displays, behavioral economics, and machine learning.

Website: http://www.disneyresearch.com
Twitter: @DisneyResearch
Facebook: http://www.facebook.com/DisneyResearch

Media Contact

Jennifer Liu
[email protected]

http://www.disneyresearch.com

Source: scienmag.com

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Metformin’s Potential Role in Breast Cancer

August 21, 2025
blank

Nerve Injury from Cancer Fuels Anti-PD-1 Resistance

August 21, 2025

Nanosecond Perovskite Quantum Dot LEDs Revolutionize Displays

August 21, 2025

Pediatric AKI: Biomarkers and AI Transform Detection

August 21, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Metformin’s Potential Role in Breast Cancer

Nerve Injury from Cancer Fuels Anti-PD-1 Resistance

Nanosecond Perovskite Quantum Dot LEDs Revolutionize Displays

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.