• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Pain sensors specialized for specific sensations

Bioengineer by Bioengineer
November 11, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Many pain-sensing nerves in the body are thought to respond to all types of 'painful events', but new UCL research in mice reveals that in fact most are specialised to respond to specific types such as heat, cold or mechanical pain.

The study, published in Science Advances and funded by Wellcome and Arthritis Research UK, found that over 85% of pain-sensing neurons in whole organisms are sensitive to one specific type of painful stimulus. It was previously thought that most pain-sensing neurons were very similar, so the new finding could enable scientists to develop new specific painkillers for different pain conditions.

Previous research using electrodes to monitor pain-sensing neurons had suggested that they respond to all types of pain, but the new study suggests that this recording technique may have altered the neuron's properties.

"While the majority of neurons are specific to one type of pain, they can become universal pain sensors when the tissue is damaged," explains lead author Dr Edward Emery (UCL Wolfson Institute for Biomedical Research). "This may explain the discrepancies between our findings and those from other studies where more invasive approaches have been used."

The team used a form of fluorescent activity-dependent imaging, where pain-sensing neurons in mice were genetically marked to emit a fluorescent glow when activated. The mice were briefly exposed to either a small pinch, cold water or hot water stimulus on one of their paws to see which neurons were activated. The results showed that over 85% of pain-sensing neurons were specific to one type of pain and did not react to others.

"Our next step is to look at animal models for specific chronic pain conditions to see which neurons cells are activated," says senior author Professor John Wood (UCL Wolfson Institute for Biomedical Research). "We hope to identify the different neurons through which chronic pain can develop, so that focussed treatments can be developed. We use 'chronic pain' to describe all sorts of pain conditions with different causes, but we now need to differentiate them so that we can develop new specific treatments."

###

Media Contact

Harry Dayantis
[email protected]
44-203-108-3844
@uclnews

http://www.ucl.ac.uk

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Federated Learning Enhances Data Privacy in Battery SOH Prediction

August 22, 2025
blank

Yogurt Consumption and Hot Spring Bathing: A Promising Duo for Enhancing Gut Health

August 22, 2025

NIH Grants Funding to Investigate Socio-Genomic Influences on Local Endometrial Cancer Survival Rates

August 22, 2025

Seamless Integration of Quantum Key Distribution with High-Speed Classical Communications in Field-Deployed Multi-Core Fibers

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Federated Learning Enhances Data Privacy in Battery SOH Prediction

Yogurt Consumption and Hot Spring Bathing: A Promising Duo for Enhancing Gut Health

NIH Grants Funding to Investigate Socio-Genomic Influences on Local Endometrial Cancer Survival Rates

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.