• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, January 3, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Cell membrane as coating materials to better surface engineering of nanocarriers

Bioengineer by Bioengineer
May 14, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press

Surface engineering of nanocarriers devotes considerable contribution to the field of biomedicine ranging from drug delivery to theranostic. Conventional chemical/physical approaches trend to use PEG functionalization, morphological control, and lipid modification, which allow nanocarriers participate various tasks in complex biological conditions. Although the in-vivo performance of nanocarries was improved by using these aforementioned methods, nanocarriers still suffer from drug delivery barrier caused by immune clearance, resulting in a low therapy efficacy. Furthermore, synthetic components of nanocarriers with undesired biocompatibility and biotoxicity also limits their biomedical applications. It is highly needed to develop biomimetic nanocarriers for the current drug delivery systems.

Recently, increase interest inspires that coating cell membranes on the surface of nanocarriers as a promising strategy can help address these issues. Cell membranes isolated from red blood cells are considered as the coating materials on the surface of nanocarriers. This novel bioimimetic hybrid system combines synthetic materials and naturally biological components, which breaks through the traditional concept of nanocarrier. By directly inheriting biological components of cell membrane (proteins, lipids, antigens), nanocarriers successfully achieve the immune-evasion and prolong the circulation time in the blood stream. To pursue functional diversity, some other cells, such as platelets, immune cells, cancer cells, and bacterium, contribute their membranes to cover nanocarriers for versatile properties (Image), including bioadhesion, target recognition, or deep tissue penetration. Compared with synthetic carriers, cell membrane-covered nanocarriers obviously improve their biocompatibility and get great efficiency to perform drug delivery, bioimaging, phototherapy, and detoxification. These above advantages indicate that cell membranes-inspired delivery systems will play an important role in the next-generation nanomedicine with extensive medical applications.

Prof. Junbai Li at Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry?Chinese Academy of Sciences, heads an expertise biomaterial team that develop a series of cell membrane-camouflaged nanocarriers for cancer therapy ranging from drug delivery to photothermal therapy as well as photodynamic therapy. A recent review article published in National Science Review, Prof. Junbai Li’s group reviews recent progress of cell membranes-covered nanoparticles from biomaterials perspective, and demonstrate their unique advantages and highlight relevant biomedical applications. The appearance of this review will help researchers of interdisciplinary science to understand cell membrane coating materials, and further promote the development in this field.

###

See the article:

Mingjun Xuan, Jingxin Shao and Junbai Li

Cell Membrane-Covered Nanoparticles as Biomaterials

Natl Sci Rev (March 2019) doi: 10.1093/nsr/nwz037

https://doi.org/10.1093/nsr/nwz037

The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country’s rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.

Media Contact
Junbai Li
[email protected]

Related Journal Article

http://dx.doi.org/10.1093/nsr/nwz037

Tags: Chemistry/Physics/Materials Sciences
Share14Tweet9Share3ShareShareShare2

Related Posts

blank

Mapping Arginine Reactivity Across the Human Proteome

January 3, 2026
Stepwise Catalytic Method Enables Diverse P(V) Stereochemistry

Stepwise Catalytic Method Enables Diverse P(V) Stereochemistry

January 2, 2026

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

December 19, 2025

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

December 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    120 shares
    Share 48 Tweet 30
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    52 shares
    Share 21 Tweet 13
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    44 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoupling Point Spread Functions in Fluorescence Microscopy

Supporting LGBTQIA+ Communities in Viral Disease Prevention

Mapping Arginine Reactivity Across the Human Proteome

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.