• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Seeking better detection for chronic malaria

Bioengineer by Bioengineer
May 2, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: WFU / Ken Bennett

In people with chronic malaria, certain metabolic systems in the blood change to support a long-term host-parasite relationship, a finding that is key to eventually developing better detection, treatment and eradication of the disease, according to research published today in the Journal of Clinical Investigation Insight.

Chronic infections, which often go undetected, account for about 75 percent of all malaria cases, said Regina Joice Cordy, an assistant professor of biology at Wake Forest University who is lead author of the study. What makes the infections tricky to detect is that malaria often has no symptoms in the chronic stage – although the host still provides a fertile environment for the malaria cells to grow, get transferred to mosquitoes via bites, and spread the disease.

Malaria infected about 219 million people in 87 countries in 2017, according to the World Health Organization. That year, the disease killed 435,000 people. Spread by mosquitoes infected with the Plasmodium parasite, malaria causes high fever, headache and chills. In its acute form, the disease can lead to coma in children and multiple organ failure in adults.

And, while research has shown that people with acute malaria have more of the parasite in their bloodstream and have a different immune response in repeat infections, there has been no clear understanding of how the parasite and host respond during chronic asymptomatic malaria infection. This study is a step in that direction.

“The human body is very complex,” Cordy said. “In addition to immune responses, our bodies have all kinds of metabolic pathways that can be activated at any given time. We wondered if there were metabolic factors that we weren’t considering when thinking about malaria infection.”

So, the research team focused on identifying changes in blood metabolites in both humans and rhesus macaques infected with the disease. They found different blood chemistry in acute vs. chronic infections, with striking differences in amino acids, which combine to form proteins and are a source of energy; and lipids, which store energy.

For instance, some amino acids, including arginine and glutamine, plummet during acute infection but return to nearly baseline levels in chronic infections in the host, and there are parallel changes in amino acids in the malaria cells. The scientists observed metabolic shifts for some lipid pathways as well. These changes suggest that the host-parasite relationship affects certain metabolic pathways globally.

“We saw metabolites changing during the acute phase – a lot of them – and it may be that both parasite and host alter their metabolic activity,” Cordy explained. “In chronicity, it’s not that the host eliminates the parasite. The parasite stays there, but it stays there differently.”

This study sheds light on how a successful parasite can coexist in its host without killing it, Cordy said.

“In this study, we observe a series of changes in metabolic activity as host and parasite go into a state where they’re coexisting,” she said. “It seems they adapt to each other in a metabolic sense.”

###

The research team included scientists from Emory University in Atlanta; Mahidol University in Bangkok; and the University of Georgia. The study was funded in part by the U.S. National Institute of Allergy and Infectious Diseases.

Media Contact
Cheryl Walker
[email protected]

Original Source

https://news.wfu.edu/2019/05/01/seeking-better-detection-for-chronic-malaria/

Related Journal Article

http://dx.doi.org/10.1172/jci.insight.125156

Tags: BiologyEcology/EnvironmentParasitology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Nigella sativa Nanoparticles: Fighting Bacteria, Oxidants, and Mosquitoes

August 5, 2025
Decoding Black Garlic’s Chemistry and Health Benefits

Decoding Black Garlic’s Chemistry and Health Benefits

August 5, 2025

Species Extinction Threatens the Unique Biodiversity of Macaronesia

August 5, 2025

Global Cyclospora Infection in HIV/AIDS Patients Reviewed

August 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    72 shares
    Share 29 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nigella sativa Nanoparticles: Fighting Bacteria, Oxidants, and Mosquitoes

Novel Method for Creating Reference Microplastic Particles

Two Decades of Flow Cytometry Advancements

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.