• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Relationship between root microbiome and nitrogen use efficiency revealed in rice

Bioengineer by Bioengineer
April 30, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A collaborative team led by Prof. BAI Yang and Prof. CHU Chengcai from the Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (CAS), recently examined the variation in root microbiota within 68 indica and 27 japonica rice varieties grown in field conditions. They revealed that the indica and japonica varieties recruited distinct root microbiota.

In natural soil, plant roots provide an ecological niche for multiple soil microorganisms known as root microbiota. These microbes develop an intimate association with plants, enhancing plants’ nutrient uptake, growth and tolerance to pathogens.

Indica and japonica are the two major subspecies of cultivated rice (Oryza sativa L.). Indica varieties show better nitrogen use efficiency (NUE) compared with japonica varieties in the field; NRT1.1B contributes to this natural variation in rice. However, the effect of root microbiota on the NUE variation observed between the indica and japonica varieties is not yet clear.

The researchers established a model using a random-forest machine-learning approach. They found this model could accurately predict indica and japonica varieties in tested fields, suggesting that the root microbes can serve as a biomarker to distinguish indica and japonica varieties.

It is interesting that indica varieties had more bacteria associated with the function of nitrogen metabolism compared with japonica varieties, indicating that nitrogen transformation is more active in the root environment of indica rather than japonica varieties.

By comparing root-associated microbiota of wild-type varieties and the the nrt1.1b mutant, they found that NRT1.1B was associated with the recruitment of approximately half of the indica-enriched bacterial taxa.

Notably, wild-type varieties showed relative abundance of root bacteria that harbor key genes for the ammonification process; however, there was no such abundance in the root microbiome of the nrt1.1b mutant. This indicates that such root microbes may catalyze the formation of ammonium in the root environment.

Using an improved high-throughput protocol to cultivate and identify bacteria, the researchers successfully cultivated more than 70 percent of the bacterial species that were reproducibly detectable in the rice roots, and established the first systematic collection of rice root bacterial cultures.

They then used gnotobiotic experimental systems with a reconstructed synthetic community (SynCom) and found that indica-enriched SynCom showed a stronger ability to promote rice growth under a supply of organic nitrogen than japonica-enriched SynCom. This further suggests that indica-enriched bacteria may contribute to higher nitrogen-use efficiency in indica rice.

These results not only reveal the relationship between the root microbiome and NUE in rice subspecies, but demonstrate the role of NRT1.1B in the establishment of root microbiota. The bacterial culture collections provide a resource for functional research of root microbiota.

The research on the interaction between root microbes and rice has laid an important foundation for the application of beneficial microbes to the process of nitrogen utilization and provides a theoretical basis for reducing nitrogen fertilizer in sustainable agriculture.

###

This study, entitled “NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice,” was published online in Nature Biotechnology on April 29, 2019.

This research is supported by the Strategic Priority Research Program of the Chinese Academy of Sciences, the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences and the National Natural Science Foundation of China.

Media Contact
QI Lei
[email protected]

Related Journal Article

http://english.cas.cn/newsroom/research_news/201904/t20190429_208937.shtml
http://dx.doi.org/10.1038/s41587-019-0104-4

Tags: BiologyFood/Food ScienceGeneticsPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Prognostic Gene Discovery in Acute Myeloid Leukemia

August 29, 2025
Salivary Proteins of Psylla: Effects on Host Plants

Salivary Proteins of Psylla: Effects on Host Plants

August 29, 2025

Uncovering Biosynthetic Secrets of Actinoalloteichus caeruleus

August 29, 2025

Decoding the Blueprint of Neuron Formation

August 28, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Insights on Glycemic Control in Sri Lankan Diabetes Patients

Boosting Student Engagement in Cross-Disciplinary Medical Research

CGM Impact: Diabetes and Sleep Apnoea Explained

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.