• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, January 12, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The kids are alright

Bioengineer by Bioengineer
April 22, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Family quarrels in seeds reveal the ways parents and offspring sometimes evolve in conflicting directions

It’s spring, finally — and in the tree branches a battle is brewing. A robin returns to her nest with an earthworm. Her nestlings all beg, but only one will get this meal. And while Mom has an interest in making sure that all of her babies thrive, each little bird is more selfish. So the baby opens his beak again and again: give me more!

Now picture a similar clash playing out in flowers of the same tree. A new study from Washington University in St. Louis reveals the surprising way that family quarrels in seeds drive rapid evolution. Researchers in Arts & Sciences discovered that conflict over the amount of resources an offspring receives from its parent seems to play a special role in the development of certain seed tissues. The study will be published the week of April 22 in the Proceedings of the National Academy of Sciences.

Plant seeds contain tissues that represent three distinct genetic relatives: the mother, the embryo and a bizarre triploid tissue called the endosperm that is involved in nutrient transfer from mother to embryo.

Katherine Geist, a PhD candidate in the laboratory led by David C. Queller, the Spencer T. Olin Professor of Biology in Arts & Sciences, and Joan Strassmann, the Charles Rebstock Professor of Biology, used genomic data from the model plant, Arabidopsis thaliana, to illuminate a dispute between these three parties over how much resources should be given to the embryo.

“When we think about how parent-offspring conflict might manifest, we have a tendency to think that there has to be two different parties interacting, a mother and baby,” Geist said. Any one baby wants more for itself than for its siblings while the mother wants a fair split among her offspring.

Robin nestlings beg for the earthworm, for example. Human babies cry.

“In a seed, that might not be as obvious,” Geist said. “But there’s still all of this stuff going on at a hormonal and cellular signalling level.

“These are different parties with different genetic interests,” she said.

All in the family

This year Queller and Strassmann are working as fellows of the Wissenschaftskolleg, an institute for advanced study in Berlin. They are best known for their work on social evolution in amoebas and within wasp societies. The new study tackles related questions in plants, and is a test of a theoretical kin selection model that Queller first explored decades ago, initially as a graduate student.

Evolutionary conflict often leads to faster evolution — sometimes called an “arms race” — as organisms with competing interests seek to one-up each other generation after generation. This interaction is best recognized where the conflicts are very strong, such as the conflict between a host and pathogen.

“But relatedness is expected to decrease conflict,” Queller said. “We wanted to see if conflicts among kin nevertheless drive rapid evolution consistent with an evolutionary arms race.”

Plants squabble, too

Previously published genomic data for Arabidopsis identified the genes specialized for different parts of a parent plant’s body, as well as those for its seed tissues and sub-tissues. Graduate student Geist meticulously combed through multiple iterations of this data for her focus species of Arabidopsis and a few of its cousins.

She compared the rates of adaptive evolution in the genes that control growth in different parts of the plants.

Geist found higher rates of adaptive evolution for genes upregulated in seeds, as compared with rates in other plant organs — like floral buds, stems, leaf rosettes and roots. She also found more evidence of adaptive evolution in genes expressed in the endosperm and maternal tissues than in embryos, and more in the seeds’ sub-tissues that are specifically involved in nutrient transfer.

“We see our predicted molecular evolution pattern of rapid adaptation in the regions of the genes that are involved in resource allocation, but not in those that are presumably only involved in storage,” Geist said.

The results support the predictions that arms races come not just from implacable enemies — like hosts and pathogens — but also from lesser squabbles within families. They also suggest that plant families have the same kinds of squabbles as animals.

The social interactions explored in this study might have implications for seed size that could be explored investigated in future work, researchers said. The ultimate size and nutritional value of seeds is important to humans, who rely on grains like rice, wheat, barley and quinoa as major sources of food around the world.

###

Media Contact
Talia Ogliore
[email protected]
http://dx.doi.org/10.1073/pnas.1817733116

Tags: BiologyDevelopmental/Reproductive BiologyEvolutionMicrobiologyPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Early Bifidobacteria Reduce Allergy Sensitization Risk

Early Bifidobacteria Reduce Allergy Sensitization Risk

January 12, 2026
Decoding DNA Methylation and Gene Expression in Early Pregnancy

Decoding DNA Methylation and Gene Expression in Early Pregnancy

January 12, 2026

Probiotic Yeast Enhances Korean Rice Wine Fermentation

January 12, 2026

Unveiling Complex Chromosomal Insertions with Karyotyping

January 12, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    146 shares
    Share 58 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    70 shares
    Share 28 Tweet 18
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    50 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gradient Graphene Powers Precise Directional Laser Printing

Machine Learning Unveils Unified Cell-State Landscape

Optimizing Rapid Genomic Sequencing in Level IV NICU

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.