• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, December 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New method may transport medicine better through the body

Bioengineer by Bioengineer
April 11, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Unsplash.com Credit Badge…

At some point every person is likely to experience an inflammatory condition somewhere in the body. The causes of inflammation are very different and the same applies to the treatment. Some types of inflammation disappear by themselves, while others require medical treatment.

Medical treatment only works if the active substances in the medicine are transported to the right place. This is called drug delivery. For example, if a patient needs to have medication directed to the liver, it is important that the medicine is designed so that it is not absorbed before it reaches the liver.

One of the major challenges in the field of drug delivery is to get the active molecules to the right organ, avoiding them to be absorbed elsewhere than the inflammated area. Now, chemist Jasmin Mecinovic from the Department of Physics, Chemistry and Pharmacy, together with his international colleagues, has found a new method of transporting these molecules.

Chemistry that acts as a crane arm

In a study that was recently published in Nature Chemistry, they describe how a so-called ‘slider’ can act as an arm on a lifting crane and in this way collect small packages of molecules. The slider itself is a small molecule.

It can sit on a polymer strand, which mostly resembles boiled spaghetti in its shape. There are lots of polymer strands in organic material, and the slider can therefore jump from one polymer to the next – and even further to more polymers, all while carrying this molecular package with it.

Imagine that the molecular package is a medical element to be transported to, for example, the kidneys, then the slider can transport the package through the body by jumping from polymer to polymer until it reaches the kidneys. This is what Mecinovic and his colleagues found.

Magnetic attraction keeps the molecules in placed

Mecinovic, together with his colleagues, has developed a theory for how the slider can in practice use a polymer as a vehicle. The chemical process utilizes a connection with negative and positive charges, which most people know from refrigerator magnets.

The slider’s negative ions, i.e. the atoms with an excess electron, will bind to the positive ions on the surface of the polymer. The researchers have discovered that the laws of chemistry allow the slider to jump between several polymers.

Laboratory tests confirm the model

The researchers did not just show that it was possible in theory. They also verified the model by using computer simulations that artificially mimic reality. Here, they found that the transport could work in practice. This was subsequently confirmed when the research team tested it with gel in the laboratory in the Netherlands.

One thing is that it works in liquids where polymers float freely, but gel is a harder material that -in many aspects- resembles a human body from a chemically mechanical perspective.

This may lead to the use of Mecinovic and his colleagues’ method of producing even more accurate drug delivery to be used in curing inflammatory diseases.

###

About the study

The program is published on 21 January 2019 in Nature Chemistry and is a collaboration between researchers from universities in the Netherlands, the United States and Denmark.

Media Contact
Majken B. E. Christensen
[email protected]

Original Source

https://www.sdu.dk/en/om_sdu/fakulteterne/naturvidenskab/nyheder2019/2019_04_11_polymer

Related Journal Article

http://dx.doi.org/10.1038/s41557-018-0204-7

Tags: Chemistry/Physics/Materials SciencesPolymer Chemistry
Share13Tweet8Share2ShareShareShare2

Related Posts

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

December 19, 2025
Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

December 11, 2025

Photoswitchable Olefins Enable Controlled Polymerization

December 11, 2025

Cation Hydration Entropy Controls Chloride Ion Diffusion

December 10, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mapping Health Risks in Atopic Eczema Patients

Immune and Metabolic Markers Define Parkinson’s Constipation Types

MicroRNAs in Breastmilk of Overweight Mothers Reviewed

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.