• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

How severe drought influences ozone pollution

Bioengineer by Bioengineer
April 10, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

From 2011 to 2015, California experienced its worst drought on record, with a parching combination of high temperatures and low precipitation. Drought conditions can have complicated effects on ozone air quality, so to better understand the process, researchers have analyzed data from two ozone-polluted cities before, during and after the California drought. They report their results in ACS’ journal Environmental Science & Technology.

Although ozone in the stratosphere protects the earth from ultraviolet radiation, at ground level the molecule is a harmful air pollutant to humans, animals and plants. Ground-level ozone forms when nitrogen oxide compounds, primarily from motor vehicle emissions, react with volatile organic compounds (VOCs) from natural and anthropomorphic sources. Isoprene, a VOC emitted by plants, is a significant contributor to ozone production during summer months in many locations around the world. However, plants also decrease air ozone levels by taking the gas up through pores in their leaves. Because drought conditions affect both of these plant-related processes, Angelique Demetillo, Sally Pusede and colleagues wanted to examine air concentrations of isoprene and ozone — as well as leaf area index, nitrogen dioxide and meteorology — before, during and after the California drought.

For their study, the researchers analyzed publicly available data collected from the ground and satellites in Fresno, an ozone-polluted city close to an oak savanna, and Bakersfield, California. They found that isoprene concentrations did not change significantly during the early drought, but they dropped by more than 50 percent during the most severe drought conditions. The effects of drought on isoprene were also dependent on atmospheric temperature. The researchers found that drought altered ozone production such that the process became chemically more sensitive to the decrease in isoprene and other drought-affected VOCs. These factors led to an estimated overall decrease in ozone production of approximately 20 percent during the severe drought. However, this decrease was offset by a comparable reduction in ozone uptake by plants, leading to only a 6 percent reduction in ozone levels overall during the severe drought period. These results suggest that drought influences on ozone pollution are complex and depend on drought severity and duration, the researchers say.

###

The authors acknowledge funding from NASA, the NASA Student Airborne Research Program, the National Suborbital Research Center and the NASA Airborne Science Program.

The paper’s abstract will be available on April 10 at 8 a.m. Eastern time here: http://pubs.acs.org/doi/abs/10.1021/acs.est.8b04852

The American Chemical Society, the world’s largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Follow us: Twitter | Facebook

Media Contact
Katie Cottingham
[email protected]

Tags: Atmospheric ChemistryAtmospheric ScienceChemistry/Physics/Materials SciencesPollution/RemediationTemperature-Dependent PhenomenaWeather/Storms
Share12Tweet7Share2ShareShareShare1

Related Posts

Al–Salen Catalyst Powers Enantioselective Photocyclization

Al–Salen Catalyst Powers Enantioselective Photocyclization

August 9, 2025
Bacterial Enzyme Powers ATP-Driven Protein C-Terminus Modification

Bacterial Enzyme Powers ATP-Driven Protein C-Terminus Modification

August 9, 2025

Machine-Learned Model Maps Protein Landscapes Efficiently

August 9, 2025

High-Definition Simulations Reveal New Class of Protein Misfolding

August 8, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    137 shares
    Share 55 Tweet 34
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    77 shares
    Share 31 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    55 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Al–Salen Catalyst Powers Enantioselective Photocyclization

Emergency Transport’s Effect on Pediatric Cardiac Arrest

Bioinformatics Uncovers Biomarkers for Childhood Lupus Nephritis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.