• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Reducing greenhouse gases while balancing demand for meat

Bioengineer by Bioengineer
April 10, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Humans’ love for meat could be hurting the planet. Many of the steps involved in the meat supply chain result in greenhouse gas emissions. But a new international study in ACS’ Environmental Science & Technology evaluates several strategies that could reduce these environmental effects.

European Union meat production grew almost 16 percent between 1990 and 2016, while consumption rose 13 percent, according to the Organisation for Economic Co-operation and Development and the Food and Agriculture Organization of the United Nations. This growth has placed a burden on the environment, because meat production results in more greenhouse gas emissions and requires more natural resources including land, water and energy, compared with grain-based food production. Using Germany as a test case, Gang Liu and colleagues examined the entire meat supply chain to weigh the impact of various environmental mitigation strategies on greenhouse gas emissions.

Reducing meat consumption would cut emissions the most, they determined. Eating more parts of the animal — from “nose to tail”– would also have a significant benefit. Emissions could additionally be curbed by eliminating meat waste in retailing and in homes and restaurants, and by finding uses for slaughtering and processing byproducts. Combining all strategies the researchers studied would reduce greenhouse gas emissions from the meat supply chain by 43 percent compared to 2016 levels. They say their findings could inform future policy-making related to climate change mitigation of the animal production and meat processing sector.

###

The authors acknowledge funding from REFRESH (Resource Efficient Food and dRink for the Entire Supply cHain), under the Horizon 2020 Framework Programme of the European Union.

The paper’s abstract will be available on April 10 at 8 a.m. Eastern time here:
http://pubs.acs.org/doi/abs/10.1021/acs.est.8b06079

The American Chemical Society, the world’s largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Follow us: Twitter | Facebook

Media Contact
Katie Cottingham
[email protected]

Tags: Agricultural Production/EconomicsAtmospheric ChemistryAtmospheric ScienceChemistry/Physics/Materials SciencesPolicy/EthicsPollution/Remediation
Share12Tweet8Share2ShareShareShare2

Related Posts

Male Traits Boost Sexual Jealousy and Gynephilia

Male Traits Boost Sexual Jealousy and Gynephilia

October 11, 2025
Gestational Saccharin Disrupts Gut-Brain Glucose Control in Offspring

Gestational Saccharin Disrupts Gut-Brain Glucose Control in Offspring

October 11, 2025

Exploring the GT92 Gene Family in Cotton

October 11, 2025

Methylome Changes Drive Fiber Differentiation in Cotton

October 11, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1216 shares
    Share 486 Tweet 304
  • New Study Reveals the Science Behind Exercise and Weight Loss

    102 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    99 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    88 shares
    Share 35 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Microplastics: New Threat to Osteoarthritis Uncovered

How ECMO Cannulation Shapes Hemodynamics and Hemolysis Risks

Aligned Carbon Nanotube Arrays Revolutionize Terahertz Transistors

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.