• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Rusted root: Weedy rice repeatedly evolves ‘cheater’ root traits

Bioengineer by Bioengineer
April 5, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Weedy rice is neither wild rice nor crop rice, but rice gone rogue that has shed some traits important to people. It also is an incredibly aggressive, potentially detrimental weed that pops up almost everywhere rice is grown, and it can reduce crop yields by more than 80 percent if it invades a field.

Researchers from Washington University in St. Louis and the Donald Danforth Plant Science Center used a new imaging technique to reveal a takeover strategy that has worked for weedy rice over and over again: roots that minimize below-ground contact with other plants.

“Weedy rice may have evolved a go-it-alone ‘cheater’ root growth strategy that could allow it to exploit the nutrient-sharing soil environment of rice fields,” said Kenneth M. Olsen, professor of biology in Arts & Sciences at Washington University and senior author on a new paper in New Phytologist relating their findings.

“We tend to think of competition occurring above ground because that’s the part of the plant we see. But that’s only half the plant,” Olsen said. “It’s the ‘hidden half’ — i.e., the root system — that plays a critical role in some of the most important aspects of plant growth and survival, including water uptake and competition for essential nutrients like nitrogen and phosphorous.”

By some estimates, root growth is actually a more important determinant of competitive success than above-ground growth, Olsen said.

“This appears to be particularly true for agricultural weeds such as weedy rice, which compete against crop varieties in agricultural fields,” he said.

A look underground

Scientists are only just beginning to get their first realistic glimpses of how root growth and below-ground root interactions affect a plant’s ability to compete for resources. In the past, they couldn’t get a decent look at a root system without digging it up, which inevitably damages it, or by growing plants in very artificial conditions, such as sandwiched between two glass plates.

For this study, researchers compared the roots of two independently evolved types of weedy rice that occur in the same rice fields in the southern United States. Using new imaging techniques, including a semi-automated optical tomography approach developed by Christopher Topp at the Donald Danforth Plant Science Center, the researchers took more than 70 photographs of the root systems of each of 671 different weedy rice plants. Then they modeled the pictures in 3D to create 360-degree digital maps of their roots.

The researchers used a variety of algorithms they developed to analyze 98 physical traits — including root depth, root system width, certain exploratory traits and root-soil angles.

They also conducted genetic analyses to track the weeds’ separate paths from their domesticated pasts to their persona-non-grata status in the rice fields of today.

“Natural selection says that they (the two types of weedy rice) should respond to this environment by evolving similar traits,” said Marshall J. Wedger, a PhD candidate in Olsen’s laboratory and first author on the paper. “They did evolve similar traits in response to similar environmental pressures, but they did so using very different genetic mechanisms.”

The new study shows how two independently evolved weedy rice strains have convergently arrived at a similar pattern of root growth that may play a role in their ability to outcompete cultivated rice for soil nutrients.

“By looking at the genetic basis of weedy rice evolution, we can see whether — at the genetic level — there’s more than one way to evolve a weed,” Olsen said. “What we find, both for aboveground traits and now with this study for belowground traits, is that the answer is a definitive yes.”

“In other words, it’s disconcertingly easy to evolve a weed from a domesticated crop,” Olsen said. “This can occur multiple times independently from different crop varieties.”

###

Funding: Marshall J. Wedger is supported by a National Science Foundation Graduate Research Fellowship Program (Fellow ID: 2017221153). Weedy rice research in the Olsen laboratory has been supported through the NSF Plant Genome Research Program (IOS-1032023)

Media Contact
Talia Ogliore
[email protected]

Related Journal Article

https://source.wustl.edu/2019/04/rusted-root-weedy-rice-repeatedly-evolves-cheater-root-traits/
http://dx.doi.org/10.1111/nph.15791

Tags: BiologyEcology/EnvironmentEvolutionGeneticsPlant Sciences
Share13Tweet8Share2ShareShareShare2

Related Posts

Tiny Fossils Reveal Major Insights into Arthropod Evolution

Tiny Fossils Reveal Major Insights into Arthropod Evolution

August 28, 2025
MicroRNA-25-3p Boosts Pancreatic Cancer Progression via EVs

MicroRNA-25-3p Boosts Pancreatic Cancer Progression via EVs

August 28, 2025

Exploring Histopathology in Peste des Petits Ruminants

August 28, 2025

Lipid Metabolism Key to Oat’s Heat Stress Response

August 28, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Rewrite Barriers and solutions for introducing donation after circulatory death (DCD) in Japan as a headline for a science magazine post, using no more than 8 words

Rewrite Insulin resistance in school-age children: comparison surrogate diagnostic markers as a headline for a science magazine post, using no more than 8 words

Rewrite Validation of the cancer fatigue scale (CFS) in a UK population as a headline for a science magazine post, using no more than 7 words

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.