• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, July 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

SUTD uncovers the power of dynamically rewiring swarm robotic systems

Bioengineer by Bioengineer
April 5, 2019
in Science
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: SUTD

Our world is filled with hopelessly complicated systems: transportation systems, financial systems, biological systems, etc. These so-called complex systems — natural or man-made — are systems that are intrinsically challenging to predict due to emergent collective dynamics influenced by external environmental factors.

The complexity of these systems is rooted in the intricate interdependencies between these constitutive elements and interactions with the outside world. Understanding the propagation of exogenous perturbations is of critical importance to complex systems. For instance, think of a local shutdown at one end of the power grid, and how it can lead to a massive cascading failure, snowballing into a large-scale blackout such as the 2003 Northeast blackout in the United States. Think of how a snowstorm in the New York metropolitan area triggers an avalanche of delays in San Francisco, Los Angeles, and throughout the West Coast. Or think of fads introduced by celebrities, and how they sometimes go viral, propagate and amplify through tweets/retweets, sharing and likes.

For decentralized networked systems operating in dynamic environments, the ability to respond to changing circumstances is paramount. It can be a matter of life and death for birds flocking and maneuvering to escape a predator attack. It can also be a matter of optimal efficiency for multi-robot systems operating collectively and subjected to changing conditions. It is therefore critical to investigate and understand the influence of the network topology on the system’s collective response.

With this in mind, Bouffanais and his team at the Singapore University of Technology and Design (SUTD) considered an archetypal model of distributed decision-making: the objective was to study the collective capacity of the system in responding to local external perturbations. Their theoretical network science results were verified with experiments on the collective behavior of a swarm of land robots. They revealed a nontrivial relationship between the dynamics of the perturbation and the optimal network topology. The emergent collective response of the swarm to a slow-changing perturbation increases with the degree of the interaction network, but the opposite is true for the response to a fast-changing one. Their study uncovered the existence of a specific number of interactions among units required to produce an optimal collective response.

Principal investigator, SUTD Associate Professor Roland Bouffanais said: “Given the explosion in the development of distributed/decentralized systems, this research shows that a dynamic rewiring of the interaction network is essential to the effective collective operations of these complex engineered systems at different time scales.”

###

Details of this work appeared in the Science Advances on 3 April 2019.

Media Contact
Deborah QUEK
[email protected]

Related Journal Article

http://dx.doi.org/10.1126/sciadv.aau0999

Tags: Robotry/Artificial IntelligenceTechnology/Engineering/Computer ScienceTheory/DesignVehicles
Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    51 shares
    Share 20 Tweet 13
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • New Measurements Elevate Hubble Tension to a Critical Crisis

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advanced Pressure-Velocity Patch Enhances Flight Detection

Durable, Flexible Electrochemical Transistors via Electropolymerized PEDOT

Challenges and Opportunities in High-Filled Polymer Manufacturing

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.