• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Harnessing the power of solar to enhance the electric grid

Bioengineer by Bioengineer
April 4, 2019
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

ASU to develop grid management tools to enhance power system reliability and resiliency

Arizona State University researchers are set to receive a $3.6 million award from the U.S. Department of Energy Solar Energy Technologies Office to advance solar energy’s role in strengthening reliability and resiliency of the nation’s electricity grid.

The research project, which is funded by the Advanced Systems Integration for Solar Technologies (ASSIST) program, will focus on building enhanced grid models and control technologies for increasing the amount of renewable power operating in the distribution system.

“The present distribution grid has not been designed to handle very high levels of solar energy,” says Raja Ayyanar, who is the lead principal investigator on the project and a professor of electrical engineering in ASU’s Ira A. Fulton Schools of Engineering. “As solar is a clean and increasingly cost-effective energy resource, photovoltaic inverters have great potential to enhance grid resilience and performance while ensuring reliable power to critical infrastructures.”

Ayyanar’s team at the university consists of Ira A. Fulton Chair Professor Vijay Vittal, Assistant Professor Qin Lei and Assistant Professor Yang Weng, who are all faculty members in the School of Electrical, Computer and Energy Engineering, one of the six Fulton Schools. Collaborators from Iowa State University, the Arizona Public Service Company, the National Renewable Energy Laboratory, Hitachi America Ltd. and Poundra, a local company working actively in the area of solar integration, round out the research team.

“The efforts of our faculty in electric power and energy to assemble a collaboration among academic, industry and government to address grid reliability is impressive,” says Stephen Phillips, professor and director of the School of Electrical, Computer and Energy Engineering. “An electric power grid that can incorporate increasing amounts of solar energy with high reliability is critical for national security, economic efficiency and reducing carbon emissions.”

Since the distribution grid has a difficult time managing high levels of solar energy, it can result in reverse power flow conditions, overvoltages and decreased power quality and reliability. Ayyanar says grid operators have little to no situational awareness about these issues.

Further, solar inverters — which convert solar energy to a form that can be used by electrical grids — are not coordinated and do not utilize robust cybersecurity measures, making the nation’s electricity grid potentially vulnerable to system instability and cyberattacks.

The research team will produce multiple technologies, including an end-to-end solar energy optimization platform, that enable large-scale integration of distributed solar energy resources in the delivery of electric power while simultaneously enhancing grid reliability, resiliency and power quality. The technologies will combine advanced power system models, data analytics, inverter control and complete situational awareness for grid operators through cybersecure two-way communications.

“We propose deep learning methods, which in conjunction with new, integrated transmission and distribution models will determine the absolute maximum possible solar that can be integrated at a particular point in the grid,” says Ayyanar. “Our proposed technology on an end-to-end solar energy optimization platform will enhance grid situational awareness and provide a stage for coordinated control and data-driven decision-making by grid operators.”

The team’s approach relies on a vast network of intelligent edge devices and local control supported by data analytics from the end-to-end solar energy optimization platform. The intelligent edge reduces network bandwidth and enables fully coordinated control of distributed energy resources even at extreme solar penetration levels, also known as the percentage of total load powered by solar.

Additionally, the team will develop systematic models and designs of data security rules and secure access controls to enable cybersecure interoperability across all distributed solar, storage, edge intelligent devices and communication networks.

ASU’s proposal was selected as part of an effort by the U.S. Department of Energy Solar Energy Technologies Office to invest in new projects that enable grid operators to rapidly detect physical and cyber-based abnormalities in the power system and utilize solar generation to recover quickly from power outages.

“I have no higher priority than to support the security of the country’s critical energy infrastructure,” said U.S. Secretary of Energy Rick Perry. “These projects will work to give solar technologies greater resiliency as they are integrated into our electric grid. A reliable electricity grid is essential to our national and economic security and the everyday lives of American people.”

Ayyanar’s project is among the first 10 projects selected nationwide through ASSIST to develop grid management tools and models that show how solar situational awareness will enhance power system resilience, especially at critical infrastructure sites.

“Successful completion of the research will produce technologies that enable very-large scale integration of distributed solar, which is not possible with state-of-the-art technologies, and help drive the continued growth of the solar industry,” says Ayyanar. “It can help utilities meet the ambitious renewable energy mandates set by several states. It can streamline the planning, approval and commissioning of distributed solar PV significantly reducing the interconnection costs.”

###

Media Contact
Lanelle Strawder
[email protected]
https://fullcircle.asu.edu/research/harnessing-power-solar-enhance-electric-grid/

Tags: CollaborationElectrical Engineering/ElectronicsEnergy SourcesGrants/FundingResearch/DevelopmentResearchers/Scientists/AwardsTechnology TransferTechnology/Engineering/Computer ScienceTelecommunications
Share12Tweet8Share2ShareShareShare2

Related Posts

Isolable Germa-Isonitrile with N≡Ge Triple Bond

Isolable Germa-Isonitrile with N≡Ge Triple Bond

November 24, 2025
Fluorescent RNA Switches Detect Point Mutations Rapidly

Fluorescent RNA Switches Detect Point Mutations Rapidly

November 21, 2025

Engineering Ultra-Stable Proteins via Hydrogen Bonding

November 19, 2025

Designing DNA for Controlled Charge Transport

November 18, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    93 shares
    Share 37 Tweet 23
  • Scientists Create Fast, Scalable In Planta Directed Evolution Platform

    98 shares
    Share 39 Tweet 25

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

IGF2BP3/IL6ST/STAT3 Loop Accelerates Colorectal Cancer Progression

Unlocking Biomarkers for Platinum Resistance in Ovarian Cancer

Thyroid Hormone Sensitivity Linked to Frailty in Seniors

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.